
Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0

The Brown C++ Threads Package

Version 2.0

Thomas W. Doeppner Jr.
Department of Computer Science

Brown University
Providence, RI 02912

twd@cs.brown.edu

1. Introduction

The Brown C++ Threads Package is a portable library for the support of multithreaded programming in
C++. It is built on top of the POSIX threads library and thus should be usable in any environment support-
ing POSIX threads.

2. Threads in C++

A thread in C++ is represented as a class derived from the abstract class Thread. That is, one defines one’s
own classes of threads, using the supplied Thread class as a basis. One creates a thread by allocating a new
instance of a subclass of the class Thread. The thread itself starts execution in the method startup, which
must be defined in the subclass.

For example, one might define one’s own class as follows:

class MyThread : public Thread {
public:

MyThread(int arg) {data = arg;}
private:

void startup();
int data;

};

void startup() {
threadbody(data);

}

One then might create two threads as follows:

main() {

...

MyThread ∗t1 = new MyThread(1);
t1->make_runnable();
MyThread ∗t2 = new MyThread(2);
t2->make_runnable();

...
}

This creates two threads. Note that two steps are required to create a thread: one first creates the thread
object and then creates the thread (by calling make_runnable). (The reason for the two steps is to ensure that
all constructors have executed before a thread begins its execution.)

2 The Brown C++ Threads Package: Version 2.0

N.B.: A thread and its associated object are two different things. A Thread object is an important data struc-
ture that is used by the thread, but it is not the same as the thread. Deleting the object results in the dele-
tion of data that is being used by the thread, and thus if it is deleted before the thread terminates, major
runtime problems will likely ensue. When a thread terminates (except for JoinableThreads—see Section 2.4),
its associated object is automatically deleted. This means that such threads should not be declared as local
variables. For example, the following program has a bug:

parent() {
MyThread t; // thread t’s object is initialized
t->make_runnable(); // thread t is created

... // main body of parent

} // leaving scope of parent: the destructor for
// t is invoked, destroying the thread object,
// but the underlying thread continues to run.
// Moreover, when the thread terminates, it will
// call its own destructor, thereby deleting the thread’s
// object a second time.

2.1 The Thread Object and Thread-Specific Data

To invoke a method of the current thread’s Thread object, you must have a reference to that Thread object,
which can be obtained via a call to the static method thread::current().

An important concern is thread-specific data: data that is private to a thread, yet is referred to in each thread
by the same name as in other threads. For example, system calls in single-threaded Unix processes supply
failure codes in the global variable errno. This is not a good technique for multithreaded processes, since if
two or more threads fail in system calls simultaneously, each will expect to find its error code in the same
location. Thus we must arrange so that when a thread refers to errno, it refers to its own private location,
different from the errnos of all other threads.

We have a straightforward approach for thread-specific data: subclasses of thread can be defined to contain
instance variables. Thus to have a variable that is both private to a thread and accessible globally within
the thread, we can do something like the following:

class MyNiftyThread : public Thread {
public:

MyNiftyThread();
int tsd;

private:
void startup();

};

Each instance of MyNiftyThread comes along with its own copy of tsd. To access a thread’s private copy of
tsd, it merely accesses ((MyNiftyThread ∗)Thread::current())->tsd.

2.2 The First Thread

The first thread of a program, i.e., the one that calls main, must have an associated thread object, just as all
other threads do. So that this object (and the rest of the runtime) can be properly initialized, you must sup-
ply a declaration for the first thread. This declaration must have at least file scope—its constructors must
be called before main is called. This object must be a subtype of FirstThread; any derived-class constructor
you supply is executed before main is called and the destructor is executed after normal termination of the
program.

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 3

The minimum declaration is the following:

FirstThread ft;

main(...) {

...

}

One can take advantage of using a derived class for the first thread as follows:

Class MyFirstThread : public FirstThread {
public:

int tsd;
MyFirstThread() {

InitializationCode();
}

} ft;

Thus one can provide thread-specific data for the first thread and supply an initialization procedure to be
called before main is called. However, this simple use of thread-specific data is not as useful as one might
hope. It should be possible for all threads to have a thread-specific data item of the same name. If all
threads are of the same class, then we can use the technique shown in the example in Section 2.1 in which
we use a simple expression to cast Thread::current() to the class of the invoking thread. However, since the
first thread derived from FirstThread and other threads are instances of other subclasses of Thread, this
method does not work for both the first thread and the other threads.

An alternative technique for providing thread-specific data is to encapsulate it in a separate class which
can be inherited by each thread class using it, as in the following example:

class TSD {
public:

int tsd;
};

class MyFirstThread: public Thread, public TSD {

...

};

class SecondThread: public Thread, public TSD{

...

};

However, this still forces one to refer to the thread-specific data using an expression dependent on the
referring thread’s type: either

((MyFirstThread ∗)Thread::current)->tsd

or

((SecondThread ∗)Thread::current)->tsd

We need a technique by which we can use one name (or expression) to refer to tsd from within threads of
either derived thread class. What C++ has to offer here is the virtual function. This allows us to refer to the
base class of an object and yet access a function defined in a derived class. So, to achieve our goal of

4 The Brown C++ Threads Package: Version 2.0

thread-class-transparent access to thread-specific data, we provide the virtual function hook, returning a
void ∗, in the Thread class. The function has a declared value in the base class, so it is not necessary to
redefine it, but one can redefine it as follows to achieve our goal:

class TSD {
public:

int tsd;
};

class MyFirstThread: public Thread, public TSD {
public:

void ∗hook() {return((void ∗)this);}
};

class SecondThread: public Thread, public TSD{
public:

void ∗hook() {return((void ∗)this);}

...

};

With this approach, one can refer to the thread-specific storage, regardless of the thread class, as

((TSD ∗) (Thread::current()->hook()))->tsd

2.3 Termination

A thread terminates when it returns from its first procedure (startup) and when it calls the static method (of
the Thread class) exit (i.e., Thread::exit()). Note that calls to the exit routine of the UNIX/C library result in
the termination of the entire process, not just of the calling thread. Furthermore, if the first thread returns
from main, the entire process is terminated. (Returning from main is equivalent to calling exit, according to
POSIX semantics.) However, if the first thread calls Thread::exit(), then just the first thread terminates. In
all cases, the process terminates according to the usual POSIX rules (a call to exit or through the actions of
certain signals for which there is no handler) or when all threads in the process have terminated. Note
again, as mentioned above, that destroying a Thread object (by invoking delete) does not necessarily termi-
nate the thread. For information on how one thread can cause the safe termination of another, see the dis-
cussion of alert, below.

2.4 Joinable Threads

A subclass of Thread provided in the library is JoinableThread. This adds a join method to the Thread class,
allowing one to wait until a thread terminates. Consider the following example:

class MyJoinableThread : public JoinableThread {
public:

MyJoinableThread(int i1, int i2) {arg1 = i1; arg2 = i2;}
int result() {return answer;}

private:
void startup();
int answer;
int arg1;
int arg2;

};

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 5

main() {
...
MyJoinableThread ∗t = new MyJoinableThread(1, 2);
...
t->join();
int t_result = t->result();
delete t;
...

}

void startup() {
answer = compute_answer(arg1, arg2);

}

Note the independent existence of the Thread object and the thread itself. Our thread computes a value,
which it stores in the object before terminating. The mainline thread waits until the thread it created termi-
nates (indicating that the desired value has been computed), then retrieves the value by invoking the result
method of the Thread object, and finally deletes the no-longer-needed JoinableThread object.

In the following example we provide a destructor that makes it safe to have a local declaration of a thread
derived from JoinableThread:

class LocalThread : public JoinableThread {
public:

LocalThread() {make_runnable();}
~LocalThread() {join();}

private:
void startup() { ...)

};

main() {
void sub();

sub();
...

}

void sub() {
LocalThread t;

...
}

The destructor for LocalThread calls join, thereby insuring that the thread has terminated before the
destructors for the base classes (JoinableThread and Thread) are called.

3. Synchronization

Five synchronization-object classes are provided in the package: mutexes, conditions, semaphores, read-
ers-writers locks, and barriers.

3.1 Mutexes

Mutexes provide mutual exclusion and can be used as follows:

6 The Brown C++ Threads Package: Version 2.0

class SharedCounter {
public:

SharedCounter(int i) {counter = i}
SharedCounter &operator ++();

private:
int counter;
Mutex mut;

};

SharedCounter &SharedCounter::operator ++() {
mut.lock();
counter++;
mut.unlock();

}

Multiple threads may invoke the ++ operator on the same SharedCounter concurrently; the lock and
unlock methods on the mutex insure mutually exclusive access.

An important restriction on the use of mutexes is that only the thread that locked a mutex can unlock it.
An attempt to do otherwise throws the exception MutexProblem.

Also provided with the mutex class is a try_lock method, which returns EBUSY if the mutex was locked
(and hence the caller has not locked the mutex) and returns 0 if the mutex was not locked, but is now
locked by the caller. This is useful for avoiding deadlock situations, as the following example of a doubly
linked list shows:

class ListElement {
public:

ListElement(ListElement ∗head);
~ListElement();

private:
ListElement ∗next;
ListElement ∗prev;
Mutex lock;

};

ListElement::ListElement(ListElement ∗head) {
// link the new ListElement into the head of a doubly linked list

// if head is null, we are creating a new head
if (head == 0) {

next = this;
prev = this;

} else {
head->next->lock.lock(); // lock the next node
if (head->next != head)

head->lock.lock(); // lock the head
next = head->next;
prev = head;
next->prev = this;
head = this;
head->lock.unlock();
next->lock.unlock();

}
}

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 7

ListElement::~ListElement() {
// remove the ListElement from the list

// is this the last thing on the list?
if (next == this)

return;
next->lock.lock(); // lock the next node
if (next != prev)

prev->lock.lock(); // lock the previous node
next->prev = prev;
prev->next = next;
if (next != prev)

prev->lock.unlock();
next->lock->unlock();

}

The strategy employed in this code is that, to insert or delete a node from the list, one must first lock the
mutexes of the following and preceding nodes. However, since the list is circular, there is the chance that a
deadlock may arise—for example, if a number of threads are simultaneously deleting all of the list ele-
ments. To avoid this problem we might use conditional requests for the mutex, as in the following revised
version of the destructor for ListElement:

ListElement::~ListElement() {
// remove the ListElement from the list

// is this the last thing on the list?
if (next == this)

return;
while (1) {

next->lock.lock(); // lock the next node
if (next != prev) {

if (prev->lock.try_lock() == 0) {
// we have obtained the lock
break;

}
// give up the first lock and try again
next->lock.unlock();

}
}
next->prev = prev;
prev->next = next;
if (next != prev)

prev->lock.unlock();
next->lock->unlock();

}

This new version of the method avoids deadlock by not holding onto one lock while waiting indefinitely
for the other to become available.

A very useful debugging technique, particularly for multithreaded programs, is the use of assertions. For
example, suppose that we have written a procedure that assumes that a particular mutex has been locked
by the caller. We can use an assertion to test this as follows:

8 The Brown C++ Threads Package: Version 2.0

procedure() {
assert(mutex.is_locked());
...

}

The method is_locked returns 1 if the mutex is currently locked by the calling thread, 0 otherwise. When
one is debugging the program, the call to assert does nothing if its argument evaluates to a nonzero value,
but it prints an error message and terminates the program with a core dump if the argument evaluates to
zero. To use assertions, one must include the header file assert.h, i.e.,

#include <assert.h>

If you define the compile-time variable NDEBUG, then the assert statement does not evaluate its argument
and does nothing—once you have debugged your program, you can leave the assert statements in the pro-
gram as useful comments, but you “turn them off” by defining NDEBUG.

Be aware that in future versions of this package, is_locked might be supported only as a debug option—an
option turned on only when one is more concerned about locating bugs than speed. (It is somewhat expen-
sive to support, thus it would be nice to be able to turn it off.)

3.2 Conditions

The Condition class is a more powerful synchronization primitive than the Mutex class. For example, we
can use it to solve the producer-consumer problem, as shown below:

class PC {
public:

PC(int);
~PC() {delete buf;}
void produce(char);
char consume();

private:
char ∗buf;
Mutex mut;
Condition more;
Condition less;
int nextin;
int nextout;
int empty;

};

PC::PC(int arg_size) {
size = arg_size;
buf = new char[size];
nextin = nextout = 0;
empty = arg_size;

}

void PC::produce (char item) {
mut.lock();
while (empty <= 0)

less.wait(&mut);
buf[nextin] = item;
if (++nextin >= size)

nextin = 0;

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 9

empty--;
more.notify();
mut.unlock();

}

char PC::consume() {
mut.lock();
while (empty >= size)

more.wait(&mut);
char item = buf[nextout];
if (++nextout >= size)

nextout = 0;
empty++;
less.notify();
mut.unlock();
return(item);

}

Here we see two methods on conditions: wait and notify. The former is fairly complicated: the caller pro-
vides the address of a mutex. The mutex is unlocked and the caller thread is placed on a wait queue associ-
ated with the condition. When the caller thread is woken up (because some other thread has invoked the
notify method), it first reobtains the lock on the mutex (waiting, if necessary) and finally returns from wait.
The effect of calls to notify is to wake up the first thread waiting on the wait queue. If no threads are wait-
ing on the queue, then nothing happens (and, in particular, the next thread to call wait joins the wait queue
and must be woken up by some subsequent call to notify).

An alternative to notify is broadcast, which wakes up all threads on the queue. These threads compete for
the mutex and return from wait one at a time.

3.3 Semaphores

The Semaphore class is based on Dijkstra’s notion of semaphore. An instance of this class appears to be a
nonnegative integer, to which one can apply two operations: wait (known as P in Dijkstra’s terms) and post
(Dijkstra’s V). The effect of invoking the wait method is to reduce the value of the semaphore by one, once
the semaphore is found to be positive. The effect of a call to post is to increase the value of the semaphore
by one.

Semaphores are quite useful in some applications, extremely messy in others. Here is another solution to
the producer-consumer problem, this time with semaphores.

class PCsem {
public:

PCsem(int) {
~PCsem() {delete buf;}
void produce(char);
char consume();

private:
char ∗buf;
Semaphore pmut;
Semaphore cmut;
Semaphore occupied;
Semaphore empty;
int nextin;
int nextout;
int size;

};

10 The Brown C++ Threads Package: Version 2.0

PCsem::PCsem(int arg_size) :
pmut(1), cmut(1), occupied(0), empty(arg_size) {

size = arg_size;
buf = new char[size];
nextin = nextout = 0;

}

void PCsem::produce(char item) {
empty.wait(); // wait until there is space
pmut.wait(); // get exclusive access to nextin
buf[nextin] = item;
if (++nextin >= size)

nextin = 0;
pmut.post(); // release mutual exclusion
occupied.post(); // indicate one more occupied slot in buf

}

char PCsem::consume() {
occupied.wait(); // wait until there is something in buf
cmut.wait(); // get exclusive access to nextout
char item = buf[nextout];
if (++nextout >= size)

nextout = 0;
cmut.post(); // release mutual exclusion
empty.post(); // indicate one more empty slot in buf
return(item);

}

In this instance, the solution with semaphores is a bit simpler than the one with conditions. It even allows
more parallelism. Note that we use semaphores in two ways. One way (pmut and cmut) is termed binary
semaphores—the semaphores, as used, only take values of one and zero. They are used here for mutual
exclusion, and could be replaced with mutexes. The other way (occupied and empty) is termed counting
semaphores—this is the more general technique.

Note also that, unlike mutexes, there are no restrictions on which threads can invoke the post and wait
methods.

There is an additional method, try_wait, analogous to the try_lock method on mutexes, that does not block,
but returns EBUSY if the semaphore was zero and zero if the semaphore was positive (its value is now
decreased by one).

3.4 Readers-Writers Locks

In many situations, strict mutual exclusion is more than is needed. What is often desired is to allow any
number of threads to access an object if they are not modifying it, but to allow only one thread access to an
object it will modify. This sort of synchronization is provided with the RW class. In the simple linked list
below, some threads are doing lookups and others are doing additions.

class Node {
friend List;
public:

Node(int, Node ∗= 0);
private:

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 11

Node ∗link;
int value;
RW lock;

};

Node::Node(int v, Node ∗n) {
value = v;
next = n;

}

class List{
List() : head(0) {head = 0;}
~List() { ... }
int search(int);
int add(int);

private:
Node head;

};

int List::search(int key) {
Node ∗prev = &head;
Node ∗cur;
prev->lock.rlock();
for (; prev->link != 0; prev = cur) {

cur = prev->link;
cur->lock.rlock();
prev->lock.unlock();
if (cur->value == key) {

cur->lock.unlock();
return(1);

}
}
prev->lock.unlock();
return(0);

}

void List::add(int v) {
Node ∗prev = &head;
Node ∗cur;
prev->lock.wlock();
for (; prev->link != 0; prev = cur) {

cur = prev->link;
cur->lock.wlock();
if (v > cur.value) {

prev->link = new Node(v, cur);
cur->lock.unlock();
prev->lock.unlock();
return;

}
prev->lock.unlock();

}
prev->link = new Node(v);
prev->lock.unlock();

}

12 The Brown C++ Threads Package: Version 2.0

The RW class provides the rlock and wlock methods, which allow one to take a read lock, meaning that writ-
ers are not allowed, and to take a write lock, meaning that no other threads are allowed. The unlock method
releases both types of locks. In addition, there are try_rlock and try_wlock methods, which work analo-
gously to the “try” methods of mutexes and semaphores.

As with mutexes, methods are provided for use within assertions for testing whether a lock is held. The
method is_wlocked returns whether the calling thread has the RW lock write-locked. The method is_rlocked
returns whether any thread has the RW lock read-locked. (Note the difference here: Mutex::is_locked and
RW::is_wlocked return whether the calling thread holds the lock; RW::is_rlocked merely returns whether the
lock is locked or unlocked.)

As with Mutex::is_locked, RW::is_wlocked and RW::is_rlocked might, in future versions of this threads pack-
age, be supported only as a debug option.

N.B.: is_rlocked and is_wlocked are not supported in the Solaris version of this package—RW locks are
implemented using the readers-writer locks of the Solaris threads package, which precludes any imple-
mentation of these tests.

3.5 Barriers

A barrier is a generalization of the idea embodied in joinable threads. Barriers supply a wait method,
which causes calling threads to block until a specified number of threads have called it; then all are
released. A simple example is shown below.

class SyncStartThread : public Thread {
public:

SyncStartThread(Barrier ∗b);
private:

void startup();
Barrier ∗sync;

};

SyncStartThread::SyncStartThread(Barrier ∗b) {
sync = b;
make_runnable();

}

void SyncStartThread::startup() {
initialization_routine();
b->wait();
main_routine();

}

mainline() {
...
Barrier b(6);
SyncStartThread ∗t[5];
for (int i=0; i<5; i++)

t[i] = new SyncStartThread(&b);
b.wait();
rest_of_program();
Thread::exit()

}

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 13

Here we are creating six threads of type SyncStartThread. Each of these threads executes some initializa-
tion code; we want to ensure that all threads have executed their initialization code before they go on with
the rest of the program. So the five new threads, plus the mainline thread, call the wait method of the bar-
rier. None of them return from this call until all have made the call, and thus all the new threads have exe-
cuted the initialization code.

N.B.: Be very careful about deleting barriers. There is no reason to believe that all threads have exited a
barrier just because they have all entered it. When you delete a barrier, you must be certain that no threads
are still inside of it. To make this possible, the wait method on barriers returns a one if the calling thread is
the last thread to exit from the barrier, otherwise zero. Thus a safe way to delete a barrier is to have all
threads calling the wait method check the return value. The one and only thread for which wait returns
zero should delete the barrier. Note that the following program has a bug:

xyzzy() {
Barrier b(6);
for (int i=0; i<5; i++)

new SyncStartThread(&b);
b.wait();

}

When the thread calling xyzzy returns from xyzzy, the destructors for all objects local to the xyzzy scope are
invoked. Thus the destructor for the barrier b is invoked, even though there is no assurance that all threads
are out of b. In the code for mainline above, we avoided this problem by having the thread calling mainline
perform a Thread::exit rather than exit the mainline scope, thus insuring that the barrier’s destructor is not
called. Alternatively, the barrier could have been allocated from the heap (i.e., using new). Then each
thread could have tested the value returned by wait, with the one thread for which wait returns zero delet-
ing the barrier.

4. Alerts

An alert is a way to get the attention of a thread, often so as to force it to terminate. One thread invokes the
alert method of another’s Thread object; the effect is to cause an Alerted exception to be thrown in the target
thread. If the target thread does not handle the exception, then it (but not the entire process) is terminated.

Alerts could be dangerous—if they were allowed to happen in an unrestricted fashion, a thread could be
interrupted, and perhaps terminated, in the middle of important operations. To keep things safe, alerts are
constrained to be acted upon by the target only at well defined, safe points known as alert points. That is,
the target of an alert will be affected by it only when it executes a routine that is an alert point. The alert
points supplied by default are: Thread::alert_test (whose affect is only to be an alert point), Condition::wait,
Semaphore::wait, Barrier::wait, Thread::join, as well as renamed versions of the routines that must be cancella-
tion points in POSIX 1003.1c. These latter routines are renamed by capitalizing their first letters. They are:
Aio_suspend, Close, Creat, Fcntl, Fsync, Mq_receive, Mq_send, Msync, Nanosleep, Open, Pause, Read, Sigwaitinfo,
Sigsuspend, Sigtimedwait, Sigwait, Sleep, System, Tcdrain, Wait, Waitpid, and Write. In addition, though not
mentioned in 1003.1c, Accept, Poll, Readv, Select, and Writev are alertable if accept, poll, readv, select, and
writev are cancellation points in the underlying POSIX-threads implementation. Alerts may be masked by
use of the method (of the Thread object) alert_disable and unmasked via the method alert_enable. It is possi-
ble to make alert points out of other functions: see the release notes for instructions.

An example of the use of threads is given below in which two threads are searching a database. When one
of them finds what they are after, it alerts the other so as to tell it not to search any further.

void thread_body() {
try {

search(database, per_thread_start_point);
// the item has been found—notify the other thread that
// it is no longer necessary for it to search

14 The Brown C++ Threads Package: Version 2.0

other_thread->alert();
} catch (Alerted &a) {

// we’ve been alerted; if we aren’t going to rethrow the
// exception object then we should delete it
delete &a;
// There’s no point continuing to search, so
// we continue with the rest of the program

}
rest_of_program();

}

Note that the Alerted exception has no parameters: the only information conveyed is that an alert has
occurred. Also, alerts are not counted by the receiver: when one is received, an alert-pending bit is set, and
when the Alerted exception is thrown, the alert-pending bit is cleared. Thus if several alerts are received
before any are noticed, only one Alerted exception is thrown. Also note the distinction between the alert
and the Alerted exception. An alert is the action of one thread upon another. The result of the action is to set
the target thread’s alert-pending bit. The target thread must notice that this bit is set (subject to whether
alerts are masked off (via alert_disable) or not (via alert_enable)).

If a thread is alerted and throws the Alerted exception while blocked within a wait on a condition, the asso-
ciated mutex will be locked before the exception is thrown. This is important so that one can depend on the
state of the mutex when catching the exception. For example, consider the following code fragment:

try {
mutex.lock();
while(must_wait)

cond.wait(&mutex);
mutex.unlock();

} catch (Alerted &a) {
assert(mutex.is_locked());
mutex.unlock()
throw(a);

}

We are guaranteed that the assertion within the catch clause is true, and thus can safely unlock the lock
and propagate the exception.

5. The API

5.1 The Thread Class

void alert() Set the alert-pending bit of the Thread object.

static int alert_disable() Set this Thread object so that alerts are masked. It returns zero if
alert_disable was already in effect for the thread, one otherwise.

static int alert_enable() Set this Thread object so that alerts are not masked. This routine is an
alert point. It returns zero if alert_enable was already in effect for the
thread, one otherwise.

static void alert_test() throw(Alerted)
An alert point—if an alert is pending and unmasked, an Alerted excep-
tion is thrown.

int Accept(int fd, struct sockaddr ∗s, int ∗len) throw(Alerted);

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 15

int Aio_suspend(const struct aiocb ∗list[], int nent, const struct timespec ∗timeout)
throw(Alerted);

int Close(int fd) throw(Alerted);
int Creat(const char ∗path, mode_t mode) throw(Alerted);
int Fcntl(int fd, int request, struct flock ∗arg) throw(Alerted);
int Fsync(int fd) throw(Alerted);
ssize_t Mq_receive(mqd_t mqdes, char ∗msg_ptr, size_t msg_len,

unsigned int ∗msg_prio) throw(Alerted);
int Mq_send(mqd_t mqdes, const char ∗msg_ptr, size_t msg_len,

unsigned int msg_prio) throw(Alerted);
int Msync(void ∗addr, size_t len, int flags) throw(Alerted);
int Nanosleep(const struct timespec ∗rqtp, struct timespec ∗rmtp) throw(Alerted);
int Open(const char ∗path, int oflag) throw(Alerted);
int Open(const char ∗path, int oflag, mode_t mode) throw(Alerted);
int Pause() throw(Alerted);
int Poll(struct pollfd ∗fds, unsigned long nfds, int timeout) throw(Alerted);
int Read(int fd, void ∗buf, int size) throw(Alerted);
int Readv(int fd, struct iovec ∗vec, int size) throw(Alerted);
int Select(int nfds, fd_set ∗rv, fd_set ∗wv, fd_set ∗xv, struct timeval ∗to) throw(Alerted);
int Sigwaitinfo(const sigset_t ∗set, siginfo_t ∗info) throw(Alerted);
int Sigsuspend(const sigset_t ∗signal_mask) throw(Alerted);
int Sigtimedwait(const sigset_t ∗set, siginfo_t ∗info,

const struct timespec ∗timeout) throw(Alerted);
int Sigwait(sigset_t ∗set, int ∗signal) throw(Alerted);
unsigned int Sleep(unsigned int seconds) throw(Alerted);
int System(const char ∗string) throw(Alerted);
int Tcdrain(int fd) throw(Alerted);
pid_t Wait(int ∗status_location) throw(Alerted);
pid_t Waitpid(pid_t process_id, int ∗status_location, int options) throw(Alerted);
int Write(int fd, void ∗buf, int size) throw(Alerted);
int Writev(int fd, const struct iovec ∗vec, int size) throw(Alerted);

These are alertable versions of the corresponding system calls: i.e., if
alerts are enabled and either are pending at the beginning of the call or
become pending during the call, the system call is terminated and the
Alerted exception is thrown in the thread.

static Thread ∗current() This method returns a pointer to the Thread object of the caller.

static void exit() Causes the calling thread to terminate.

virtual void ∗hook() The default definition of this function is to return 0. The intent is that
programs can override it in derived classes, giving them a way to refer
to properties of the derived class while dealing with the base class.

16 The Brown C++ Threads Package: Version 2.0

void make_runnable() Threads are created in a suspended state. To cause them to start execu-
tion, this method must be invoked on their Thread objects.

Thread(stack_size=0) The constructor for the Thread class. The new thread’s stack has the
size (in bytes) given by the argument (which defaults to zero). A zero
stack size results in the default stack of the underlying POSIX-threads
implementation. If the thread could not be created because of an error
detected in the underlying POSIX-threads implementation, an excep-
tion of type pthread_failure is thrown. The member pthread_failure::code
is an integer containing the error code (one of the standard values for
errno—see the introduction to Section 2 of the Unix manual) that
describes the problem.

5.2 The JoinableThread Class

void join() throw(Alerted) The calling thread blocks until the target thread (on whose Thread
object this method has been invoked) terminates. The target thread’s
Thread object continues to exist and must be deleted explicitly. (It is
automatically deleted on termination on nonjoinable (default)
threads.) If an error occurs (e.g., the target thread has already been
joined by some other thread) an exception of type pthread_failure is
thrown; pthread_failure::code contains the error code (an integer); see
Section 2 of the Unix manual for the meanings of the codes. This
method is an alert point. If the method throws an Alerted exception,
the thread whose object this is a method of becomes detached, i.e., it is
no longer necessary for it to be joined.

JoinableThread(stack_size=0) The constructor for the JoinableThread class. The stack_size argument
is as for the constructor for the Thread class. It throws the same excep-
tion for the same reasons as the constructor for the Thread class.

5.3 The Barrier Class

Barrier(int count) The constructor for the Barrier class. A barrier is initialized with the
count given by the argument.

int wait() throw(Alerted) All threads calling this method block until the number of threads
given by the count argument to the constructor have called the
method. At that point, all threads are released (and the barrier can be
used again). One should delete a barrier only after all threads have
exited it. When the last thread of a given set of callers exits wait, wait
returns 1 (and it is safe to delete the barrier, assuming that it is not
being reused). Otherwise wait returns 0. This method is an alert point.

5.4 The Condition Class

void broadcast() Releases all threads currently in the wait queue of the Condition object
on which this method was invoked. If there are no threads in the
queue, then nothing happens.

void notify() Releases the first thread in the wait queue of the Condition object on
which this method was invoked. If there are no threads in the queue,
then nothing happens. Beware that occasionally more than one thread

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 17

may be released. It is also possible that a thread might be released
even if neither notify nor broadcast is called. This is all done to
encourage you to put calls to Condition::wait within while loops. (It also
has something to do with the difficulty in making this work perfectly
on all architectures.)

void wait(Mutex ∗m) throw(Alerted)
The mutex is unlocked and the calling thread is put on the Condition
object’s wait queue. Once removed from the queue (by notify, broadcast,
or through the action of an exception), the thread locks the mutex (pos-
sibly waiting for this to happen) and then returns. This method is an
alert point; if alerted, the exception is thrown after the mutex is reac-
quired.

5.5 The Mutex Class

int is_locked() Returns 1 if the calling thread holds the mutex, 0 otherwise. This is
intended to be a debugging aid and should not be used as an essential
part of a program’s logic.

void lock() The calling thread blocks until it finds the mutex unlocked. It then
locks the mutex. Only one thread may lock the mutex at a time. Dead-
lock is certainly possible. A MutexProblem exception is thrown if a
thread attempts to lock a mutex that it already has locked. This excep-
tion carries a single parameter, of type MutexProblem::problem (which is
an enumeration). The value in this case is deadlock. The value can be
obtained by examining MutexProblem::code.

int try_lock() The thread attempts to lock the mutex. If immediately successful, the
call returns 0. If the mutex is currently locked, the call returns EBUSY
immediately (this is a standard UNIX error code whose value can be
obtained by including errno.h).

int unlock() Release the lock on a mutex. It is considered an egregious error if a
thread calls unlock on a mutex for which it was not the most recent
thread to call lock. A MutexProblem exception is thrown in this case,
with a parameter of not_your_mutex. The value can be obtained by
examining MutexProblem::code.

5.6 The RW Class

int is_rlocked() Returns 1 if the RW lock is read-locked, zero otherwise. This is
intended to be a debugging aid and should not be used as an essential
part of a program’s logic. Not implemented in the Solaris implementa-
tion.

int is_wlocked() Returns 1 if the calling thread holds the write lock, zero otherwise.
This is intended to be a debugging aid and should not be used as an
essential part of a program’s logic. Not implemented in the Solaris
implementation.

void rlock() Take a read lock on the object. Any number of threads may be holding
a read lock on the object, as long as no threads are holding write locks.
The locking strategy favors writers.

18 The Brown C++ Threads Package: Version 2.0

int try_rlock() Attempt to take a read lock on the object. If it cannot be done immedi-
ately, the call returns EBUSY. Otherwise a read lock is taken and the
call returns 0.

int try_wlock() Attempt to take a write lock on the object. If it cannot be done immedi-
ately, the call returns EBUSY. Otherwise a write lock is taken and the
call returns 0.

void unlock() Release whatever lock is held on the object.

void wlock() Take a write lock on the object. Only one thread may be holding a
write lock, and only when no threads are holding a read lock on the
object. The locking strategy favors writers.

5.7 The Semaphore Class

void post() Increment the value of the semaphore by one. If there is a queue of
threads waiting for the semaphore to become positive, one waiting
thread is released.

Semaphore(int count) The constructor for the Semaphore class. A semaphore is created
whose initial value (which must be specified) is count.

int try_wait() If the semaphore’s value is positive, this decreases it by one and
returns 0. Otherwise it returns EBUSY.

int wait() throw(Alerted) This call causes the caller to block until the semaphore’s value is posi-
tive. When found to be positive, the value is decreased by one and the
caller returns. This method is an alert point.

6. Using the Package at Brown

The Brown C++ Threads library is in the directory /pro/threads/C++/lib. The static version is in
libc++thread.a and the sharable version is in libc++thread.so. The header file is in
/pro/threads/C++/include/c++thread.h. To compile and link a program on the Suns using the sharable
version of the library, use a command similar to the following:

CC -mt -o your_prog your_prog.cc \
-I/pro/threads/C++/include \
-L/pro/threads/C++/lib -lc++thread \
-R /pro/threads/C++/lib -lsocket -lnsl -lposix4

When debugging an application with debugger or dbx, you must instruct the debugger to ignore the SIG-
PWR signal, which is used by the C++ threads runtime library for support of alerts. To do this, give it the
command:

ignore PWR

Note that there are some issues concerning the thread-safety of the standard IO-stream classes of C++. See
the Solaris Answerbook on the C++ Library Reference Manual for a discussion. The –mt option to CC
insures that the appropriate Solaris libraries are included and compile-time variables are defined; thus the
Solaris-provided thread-safe versions of all C routines (such as printf) are used.

To compile and link a program on an Alpha running Digital Unix 4.0, use a command similar to the fol-
lowing:

Last modified on November 19, 1996 3:36 pm

The Brown C++ Threads Package: Version 2.0 19

cxx -o your_prog your_prog.cc -pthread \
-I/pro/threads/C++/dec/include \
-L/pro/thrads/C++/dec/lib -lc++thread -lrt -laio

