
Event-based Constraints for Sensornet Programming

Jie Mao
Brown University

jmao@cs.brown.edu

John Jannotti
Brown University

jj@cs.brown.edu

Mert Akdere
Brown University

makdere@cs.brown.edu

Ugur Cetintemel
Brown University

ugur@cs.brown.edu

ABSTRACT
We propose a sensornet programming model based on declarative
spatio-temporal constraints on events only,notsensors. Where pre-
vious approaches conflate events and sensors because they are often
colocated, a focus on events allows programmers to specify their in-
tent more directly, and better supports remote sensing devices such
as cameras, microphones, and rangefinders. In our model, com-
plex events are specified as aggregations of events in time or space,
without regard to sensor locations or communication paths. New
techniques are required to aggregate events based on these con-
straints without knowledge of nearby nodes.

We present a decentralized, scalable event detection framework that
allows for efficient in-network aggregation without coupling events
and sensors. First, we describe a SQL-style declarative language
with spatio-temporal constraints between events that can be used
to express complex events. Next, we show how these complex
events can be assembled efficiently. The distributed event detec-
tion mechanism scales to very large networks, load balances work
across sensors, and is fault tolerant to network partitions and node
failure.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Language Classifications—Con-
straint and logic languages; C.2.4 [Computer-communication Net-
works]: Distributed Systems—Distributed applications

General Terms
Design Languages Performance

Keywords
Programming Model, Sensor Networks, Complex Event, Constraints

1. INTRODUCTION
Many wireless sensor network applications require the fusion of
sensor readings from individual sensors into meaningfulevents.
These events draw the attention of human operators, activate ac-
tuators, or contibute to the construction of even higher-level events.

The events of interest vary greatly based on different application
requirements. Sometimes, a single sensor reading is significant to
the application. In other cases, applications are concerned with
complex eventswhich are the aggregations of geographically and
temporally related sensor data. In these applications, sensor data
from several different sensor nodes sensed at different moments
and places must be fused to create application-specified events.

To aggregate geographically and temporally distributed sensor data,
sensor nodes could send all reading to a single rendezvous where
they could be aggregated into application-specific events. There
are several obvious drawbacks with this approach. First, sending
all sensor data to a single place requires complete connectivity, and
creates congestion near the base station. Second, sensor data are
often redundant for complex event detection. Sending all data in-
discriminately wastes bandwidth and power and thus shortens the
system lifetime. Existing data aggregation algorithms generally ad-
dress these problems by aggregating sensor readings into complex
events at join points while propagating toward a collection point.
Unfortunately, this form of aggregation is greatly complicated by
remote sensing. It is is difficult to determine that a subevent need
not be propagated further up the tree when any given subtree might
report an event from a distant location. Cameras may observe
events quite far from their location, for example.

Beyond tree aggregation, some systems aggregate among sensor
neighborhoods[7, 14]. These neighborhoods are based on sensor
locations (i.e. nodes with 10m of a given sensor), or communica-
tion details (i.e. nodes within two hops of a given sensor). These
definitions are sometimes calleddata-centricbecause they abstract
away the details of node identity, and focus on the location of sen-
sor readings.

However, truly data-centric applications will not specify their op-
eration in terms of sensor locations and communication paths. No-
tions of locality, in space or time, are best tied to events, not sensors
or pathways. This separation is critical to supporting long-range
sensors (i.e. cameras), or complex events that may be deduced to
occur at a locations far from any single sensor (i.e. triangulated
sounds).

For example, consider three successively more complex applica-
tions in a network of acoustic and visual sensors deployed in an
urban area.

1. Detect gunfire. The application is interested in acoustic data
matching the gunshot sound pattern. A single match indi-
cates that gunfire is present. No data aggregation is neces-

sary.

2. Locate gunfire. The arrival time of the sound of a gunshot at
multiple sensor nodes must be compared in order to triangu-
late and locate the point of fire[12]. Triangulation requires
the exchange of acoustic data and processing among several
sensor nodes.

3. Locate suspects near gunfire. The location and time of gun-
fire must be compared to the locations of people detected by
surveillance cameras. The locations of the gunfire may be
arbitrarily far from the acoustic and visual sensors. Further,
the microphones that detect the gunfire may not be colocated
with the cameras that observe people. Coordination must oc-
cur with constraints expressed on the times and locations of
events, not of sensors.

The third application motivates our work to allow complex event
detection based on event constraints rather than sensor-based neigh-
borhoods. In this paper, we present a complex event detection
framework that uses geographic addressing to decouple event lo-
cations from sensor locations while allowing maximum flexibility
in choosing aggregation nodes.

Our mechanism,Distributed Constraint Processing(DCP), per-
forms distributed hierarchical event processing. We have extended
geographic hash tables (GHTs) [11] in several ways to help im-
plement DCP. DCP allows the specification of events at increasing
levels of complexity. The constraints used to specify event com-
putation are used to perform optimizations that avoid global col-
lection of low-level events. The building blocks of DCP areevent
processors, which take in simpler, lower-level events and compute
more complex, higher-level events. DCP places event processors
within the network at the locations where their input events will
be routed. The coordinates of these locations are computed byRe-
gional GHTs. These event processors operate on input data when
they become available, and send their output events to higher-level
event processors for further computation. DCP leverages the prop-
erties of GHTs to provide load-balancing and fault-tolerance. Ad-
ditionally, fault-tolerance is enhanced by our Regional GHTs which
store geographic events locally, allowing continued operation dur-
ing network partitions.

DCP is particularly suited to sensor network applications in which
the subevents of a complex event happen close to each other in
space or time (even if the sensors that detect the events are not
nearby). DCP leverages this proximity to facilitate efficient local
aggregation. However, DCP degrades gracefully to act as a general
collection tree for applications that require global fusion, such as
the detections ofmax, min, andaveragesensor readings.

In the rest of the paper, we describe our constraint framework and
discuss its performance. In Section 2, we use our event specifica-
tion language to demonstrate complex event detection with an ex-
ample application. We show how complex events are built up from
primitive events and describe the implementation of DCP based on
the example application in Section 3. Section 4 evaluates DCP’s
performance compared to simpler approaches. The paper closes
after a discussion of related work.

2. COMPLEX EVENT DETECTION
In this section, we describe the concept ofcomplex eventsand
present an event specification language. We describe how com-

plex events are formed in a hierarchical way from simpler events
and demonstrate our language using an application scenario. There
have been proposals for event languages both in the active database
community and in the complex event processing community. Our
main contribution does not lie in the language itself. We use it only
to demonstrate the importance of constraints to the specification
of complex events. Throughout our example application, note that
events are naturally specified by declaring the constraints that must
be met in order to produce complex events from simpler events.

2.1 Complex and Primitive Events
Eventsare defined as occurrences of interest in a system. A person
in a room, high temperature in an area, or the theft of a book might
all be events in different applications. However, unlike a single
sensor observation, a “book theft” event requires many observa-
tions and computation over those events. Accordingly, we divide
events into two categories: primitive events and complex events.

Raw sensor readings are primitive events. A primitive event con-
sists of the reading itself annotated with metadata, such as a time
and location.

Complex Eventsare derived from simpler events. They are pro-
duced byEvent Processorsor Event Detectors, rather than individ-
ual sensors. An event processor creates complex events when it
observes the appropriate constituent events. For example, a fire de-
tector may require the observation of high temperature and smoke
sensor readings. Further, the detector computes a fire event only
if high temperature and smoke events occur in close proximity, in
time and space.

In DCP, there are multiple event processors for every event type.
Event processors of the same type are distributed throughout the
network using Regional GHTs to facilitate distributed event aggre-
gations. The efficient evaluation of constraints to produce complex
events will be discussed in detail in Section 3.

2.2 Event Specification Language
Our event specification language borrows event operators from ac-
tive database research where event operators were used in specify-
ing triggers in database systems. We have also incorporated win-
dowing constructs from stream processing and complex event pro-
cessing research.

2.2.1 Sensor Specification
All events are derived in some way from raw sensor readings. The
output of each sensor is declared in order to reference their raw
readings in derived events. The sensor specification conforms to
the following template:

sensor name
schema attr_list

attr_list→ attr | attr_list, attr
attr → attr_type name

attr_type→ double| int | string

Figure 1: A sensor is given a name, and any number of named
and typed attributes. These attributes are referenced to create
events.

Here are two example sensor specifications:

sensor temperatureschema double temp

sensor barometerschema double pressure

We also assume that a pseudo-sensor namednodeexists in all sen-
sor platforms.Nodeprovides the spatial and temporal context in-
formation used during the construction of both complex and prim-
itive event. It has the following specification:

sensor node
schema string node_id,

double[2] loc,
double time

node_id is the unique id of the device the sensor is located on.loc
specifies the platform’s location and thetime attribute is used to
access the platform clock. We assume that sensors are sufficiently
synchronized, in time and space, to use these values in calculating
constraint matches.

2.2.2 Base Event Schema
Complex and primitive events are both represented as attribute col-
lections. All event of the same type have the same set of attributes
which is called the event schema. The schema for each event type
is specified in the event type declaration.

Some attributes, such as timestamp and location, are required in
both complex and primitive events. They constitute thebase event
schema. The base schema includes the attributesevent_id, loc,
start_time, end_timeandnode_id. The base event schema facili-
tates the use of standardized event operators that evaluate common
spatio-temporal relationships.

event_idis the identifier that identifies an instance of an event type.
This identifier can be made unique by generating a fresh identifier
for each complex event instantiation, or it can be created based on
a subset of the attributes of an event instance. In the latter case,
logically duplicate event instances will have the same identifier
and may be suppressed during later processing. Theloc attribute
stores the location assigned to the event instance.start_timeand
end_timerepresent the occurrence interval of the event. Finally,
node_ididentifies the node that generates the event instance.

2.2.3 Primitive Event Declaration
Primitive event declarations specify the transformation of sensor
readings into primitive events. A primitive event can be regarded
as a sensor reading annotated with metadata information. Primitive
event declarations are made using the template in Figure 2.

primitive name
on sensor_list

schema base_schema, attribute_list

Figure 2: A primitive event is created by combining attributes
from one or more sensors. The pseudosensor “node” is often
used to provide the time and location required by the base event
schema.

The namesymbol stands for the name assigned to the primitive
event type such asperson_detected, or barometer_reading. Sen-
sor_listcontains the sensors the primitive event is defined upon. It
may contain multiple sensors, but they must be located on the same
node. Sensor fusion across nodes is described by complex events.
Finally schemaspecifies the attributes of this primitive event type
and the way they are assigned values. Here we provide an example
primitive event specification for a temperature reading event com-
mon in many sensor network scenarios.

primitive temp
on temperature, node

schema event_id as hash(node.node_id,
node.node_time),

loc as node.loc,
start_time as node.time,
end_time as node.time,
temp as temperature.temp

Figure 3: The temp primitive event consists of the temperature
reading from the sensor namedtemperature along with time
and location information to populate the base event scheme
from the node pseudosensor.

2.2.4 Complex Event Declaration
Complex events are combinations of simpler events, each of which
may be primitive or complex. For most applications, users are inter-
ested in specifying complex events which impose spatial, temporal
or attribute-based constraints on their subevents. We take a SQL-
like approach to complex event specification and extend it with
spatial/temporal constructs such as time windows to support these
constraints. Our complex event specification template is given in
Figure 4.

complex name
on source_list

schema base_schema, attribute_list
where constraint_list

Figure 4: complex event declaration template

Every complex event type is assigned a unique name with thename
attribute. Thesource_listis used to specify the subevents of a com-
plex event type. The source list may also contain thenodepseudo-
sensor. As in primitive event specifications,schemaspecifies the
attributes of the complex event type and also defines the transfor-
mation from subevents and their attributes into the attributes of
the complex event. Theconstraint_listin the whereclause spec-
ifies a logical expression on the subevents that must be fulfilled
to construct the complex event. Constraints can be defined over
subevent attributes, and can specify temporal or spatial patterns
over subevents. We provide event operators for easy specifica-
tion of constraints over subevents. Existential constraints are also
available through subqueries. These features are described in Sec-
tion 2.2.5.

As a simple example of a complex event consider the high temper-
ature event. We define the high temperature complex event using
the previously definedtempprimitive event as follows:

complex hitemp
on temp T, node

schema event_id as hash(node.node_id,
node.node_time),

loc as T.loc,
start_time as T.start_time,
end_time as T.end_.time,
temp as T.temp

where T.temp> 70

Figure 5: A hitemp event is constructed from a single subevent
when a temp event, T, meets the constraint: T.temp > 70.

2.2.5 Constraint Specification
Temporal, spatial, attribute-based and existential constraints can
be specified in the where clause of a complex event specification.

Each constraint returns a boolean result. For easy specification of
event constraints we provide event operators, as introduced in the
event languages developed in active database research. We have
borrowed the event operatorsand, or, andsequencefrom existing
work in that area [2, 3, 9]. All event operators are n-ary operators.
The last argument of each event operator is the time window ar-
gument,w, which specifies the maximum time between any two
subevents of the complex event. Subevents which are separated by
more thanw time units cannot be part of the same complex event
instance. When an event operator produces output on a given set of
subevents we say the corresponding event constraint is satisfied.

We also provide the SQL constructexists (subquery)for the speci-
fication of existential constraints. The result of theexistsclause is
true if the subquery returns any result. An example event specifica-
tion to detect unattended luggage is given in Figure 6.

complex unattended_bag
on BagDetector B, node

schema event_id as hash(node.node_id,
node.node_time, B.bagid),

loc as B.loc,
start_time as B.start_time,
end_time as B.end_.time,
bagid as B.bagid

where not exists (select * from person_detected P
where and(P,B;60) and distance(P.loc, B.loc)< 5)

Figure 6: An unattended_bag event when a bag is detected, but
no person is detected within 5 meters for one minute. The base
event schema is populated from the base schema in theBagDe-
tector event.

The unattended bag complex event is an example for a security
monitoring scenario. We assume that there is a detector for bags al-
ready implemented and we can access a bag detection event through
BagDetector. The event specification is made such that a bag is
considered unattended when no person is detected within 5 meters
of the bag for 60 seconds.

2.3 Example Application
Consider an example object tracking application using calibrated
stereo cameras. Stereo cameras can localize the 3D positions of
the objects in their frustums, and can identify different objects us-
ing techniques, such as histogram comparison [1]. Such a camera
network can be used to monitor behavior of people and to detect ab-
normal activities in an area. Here, we present an example scenario
where the monitored event is aperson chasing another person. We
use our event specification language to declare the events involved
in the application.

In order to detect complex events, we break them down into sim-
pler, lower-level events and repeat this process until all events are
primitive. For our example chase scenario, this process is illus-
trated in Figure 7. We can think of thepeople_chasingcomplex
event as two people running close to each other (e.g.10 meters) for
a certain amount of time (e.g.5 seconds). Below is the specification
for thepeople_chasingcomplex event based on this idea.

������� ��� �	�
�� ���	���� �	�
�� ���	� ��� �	�
�����	�
������� ��� �	�
�� ���	�

�������
�	��
�����	� �������
�	��
�� ���	�
��	����������
�� ���	�

�� �������	�

��������� ��� ������� ��
� �� !�"����������� ��

� �� !�"�"�� ����� ��
���� #���$%� !�"���� ����	�� ��������
�����	�

Figure 7: The process to detect thepeople_chasing event is
decomposed into the following steps: 1. Detect a person us-
ing the person detector on the stereo camera sensor; out-
put a person_detected event; 2. Detect a running person
by calculating the person’s moving speed using two consecu-
tive person_detected events of the same person; output arun-
ning_person event; 3. Detect people running together by cal-
culating the distance between two different running people; 4.
Detect people chasing each other by looking for two people
keeping running closely for a period of time, examining con-
tinuous running_group events with same person IDs; sendpeo-
ple_chasing events back to the base station.

complex people_chasing
on running_group as G1, running_group as G2,

node
schema event_id as hash(node.node_id, node.time,

G1.person1_id, G1.person2_id),
loc as avg(G1.loc, G2.loc),
start_time as G1.start_time,
end_time as G2.end_time,
node_id as node.node_id,
person1_id as G1.person1_id,
person2_id as G1.person2_id,

where seq(G1, G2; SRC_PERIOD_RG) and
G1.person2_id = G2.person2_id and
G1.person1_id = G2.person1_id and
distance(G1.loc, G2.loc)<= CHASING_DIST

people_chasingcomplex event is defined using therunning_group
complex event.running_groupcomplex event detects two people
running in close proximity. Its specification is given below.

complex running_group
on running_person as R1, running_person as R2,

node
schema event_id as hash(node.node_id, node.time,

R1.person_id, R2.person_id),
loc as avg(R1.loc, R2.loc),
start_time as min(R1.start_time, R2.start_time)
end_time as max(R1.end_time, R2.end_time),
node_id as node.node_id,
person1_id as R1.person_id,
person2_id as R2.person_id,

where and(R1, R2; SRC_PERIOD_PR) and
R1.person_id != R2.person_id and
distance(R1.loc, R2.loc)<= GROUP_DIST

The running_groupcomplex event depends on the complex event
running_person. Therunning_personcomplex event, which is used
to find a running person, can be detected by computing a person’s
moving speed and comparing it to a threshold speed. This involves
the comparison of twoperson_detectedevents of a person with
different location and timestamps. The specification of therun-
ning_personcomplex event is given below.

complex running_person
on person_detected as P1, person_detected as P2,

node
schema event_id as hash(node.node_id, node.time,

P1.person_id),
loc as P2.loc,
start_time as P1.start_time,
end_time as P2.end_time,
node_id as node.node_id,
person_id as P1.person_id,
speed as distance(P1.loc, P2.loc)

/(P2.end_time-P1.end_time)
where seq(P1, P2; SRC_PERIOD_PD) and

P1.person_id = P2.person_id and
distance(P1.loc, P2.loc)<= RUNNING_DIST and
distance(P1.loc, P2.loc)

/(P2.end_time-P1.end_time)
> SOURCE_PERIOD_PD*MAX_SPEED

These specifications are naturally expressed with both spatial and
temporal constraints that limit the distance and interval between
subevents. People can only run so fast, so a spatio-temporal con-
straint prevents spurious matches from distant, unrelated events.
Furthermore, these constraints allow DCP to operate efficiently,
disseminating subevents only far enough to meet other relevant
events. Without such constraints, a global event detection process
would have to occur which would reduce the performance of the
system.

Finally, theperson_detectedevents can be generated by theper-
son_detectoron each sensor node, which constantly analyzes the
stereo images taken by the stereo camera.

sensor person_detector
schema int person_id,

double[2] loc
primitive person_detected

on person_detector as PD, node
schema event_id as hash(node.node_id, node.time,

PD.person_id),
loc as PD.loc,
start_time as node.time,
end_time as node.time,
node_id as node.node_id,
person_id as PD.person_id

Although complex events are decomposed in a top-down manner,
DCP uses a proactive approach for event processing. Events are
constantly generated by lower-level event processors and pushed
into higher-level event processors. Whenever an event processor
produces an event, it looks up the system configuration to find
high-level event processors that operate on this type of subevent,
then sends the event to their location. In such a way, events of all
complexities can be detected with low delay.

In the rest of the paper, we will use this example application to illus-
trate how our constraint processing framework works and evaluate
its performance with simulation.

3. DISTRIBUTED CONSTRAINT PROCESS-
ING

In this section, we describe how complex events are detected in the
Distributed Constraint Processing framework. DCP detects events
in a decentralized manner, avoiding global collection trees, and
balancing the computational and network load across participating
nodes.

We build our constraint matching on top of geographic hash tables
because they are a natural fit for our needs: they use geographic,
rather than node-based addressing and they provide a matching
mechanism that is scalable and fault-tolerant. We extend GHTs
to provide a local matching service.

3.1 Regional GHTs
In applications that detect events in a spatial area covered with
wireless sensors, we expect that most events contain regional or
temporal constraints because they are triggered by related phenom-
ena, perhaps detected by various nearby sensor types. In our ex-
ample application, people chasing may only be considered a sus-
picious behavior when it happens in a certain high security area,
and people will only be considered to be chasing if they are run-
ning in close proximity. DCP leverages these constraints to obtain
significant performance improvements without compromising cor-
rectness.

Data-Centric Storage [10] introduced the Geographic Hash Table
(GHT) for wireless sensor networks. GHTs hash keys into geo-
graphic coordinates within the network topology, and store key-
value pairs at the sensor node geographically closest to the hashed
location. The canonical form of the GHT hash function iscoordi-
nates = hash(key).

To preserve spatial locality of the events, we extend the canonical
GHT hash function to createRegional GHTswhich takekeys and
regions into account during hashing. Theregion defines the
boundary of a geographic area. The extended regional hash func-
tion returns coordinates within the specified region. The regional
hash function iscoordinates = hash_r(key, region).

Figure 8 shows the difference between a normal GHT and Regional
GHT. Note that the event is stored much closer to its original loca-
tion in a Regional GHT. In a Regional GHT, lookups must specify
a matching region to find a particular event.

3.2 Hierarchical Event Processing
To use Regional GHT for spatially constrained event detection, we
first divide the sensor network field into a grid of tiles. The size
of the tiles can be determined by the constraints expressed in event

������ ��� 	
���
�� ������� �
�

��
���� ���

� �	
���
���

� ��

�

Figure 8: Normal GHT hashes events to global coordinates. Re-
gional GHT hashes events to coordinates within a given region
which is the lower left tile.

composition specifications, the resolution of sensor readings, the
density of the event detectors, or simply picked arbitrarily. When
an event occurs, it is stored in the tile covering the event location.

When processing a regional query for a particular area, the query
will be sent toall tiles overlapping the queried area. Each of these
sub-queries will use the Regional GHT to find the location where
the interested data would be stored in each tile. A Regional GHT
avoids the need to store events at arbitrary locations in the (poten-
tially large) sensor field, though lookups may need to explore a few
tiles if the queried area is large, or falls on a tile border.

Moving beyond support for pull-based queries, we can extend Re-
gional GHTs to detect complex events, as specified by the language
of Section 2. Here, events are not only stored at the location they
are created, they are also pushed to a rendezvous point determined
by the hash of the event type of any complex event specification for
which they may be a part. Event processors at that location attempt
to construct complex events that meet the event specification.

Sensor nodes constantly produce primitive events with metadata
such as timestamp and location information. When a lower-level
event is detected, it is sent to all higher-level event processors that
need the lower-level event as input. Due to the locality preserving
effect of the Regional GHT, the lower-level events only need to be
sent to the higher-level event processors in tiles that contain the
lower-level event’s location (with occasional additions, described
in Section 3.4).

As higher-level events are computed, these events may be sent to
the locations of even higher level event processors. When low-
level events are combined into a complex event, redundant data
is removed, and only the attributes attached to the new event are
pushed to higher-level processors, usually at a lower rate than the
lower-level events.

Hierarchical event processing is performed efficiently from bottom
up. At each level, events are hashed and distributed evenly within
the tiles due to the advantage of GHTs, and can be directly accessed
by ad-hoc queries. A Regional GHT is basically a spatial index
making spatial queries efficient.

In the application of Section 2.3, there is a Person Detector on each
stereo camera node, so theperson_detectedprimitive events are
stored at the nodes where they are detected, and propagated torun-
ning_persondetectors. Therunning_personand running_group
also propagated to the processors for the specifications in which
they are referenced. Finally,people_chasingevents are sent to a

base station for human attention. Figure 9 shows how the events are
processed in a hierarchical order. Note thepeople_chasingevents
are stored at the same node where the dependentrunning_group
events are produced. This is an optimization decision explained in
Section 3.6.

������� ��� ��� �!�"!�� ����#$ �%&' ���� �! �"!�� �������� (���# �! �"!�� �)'�� *!'!���
��� ��� �! �"!�� �

+,-- .-/012+34- 252- 631241 72089:3 .-/ 252- 63
12+34-0;2 628 62; 252- 63

Figure 9: The hierarchical event processing for people chas-
ing detection. Each event detector accepts multiple lower-level
events as input and produces higher-level events. Events are
pushed from bottom up to the base station.

In DCP, the original GHT’sput() function is used for sending
lower-level events to higher-level event processors, rather than stor-
ing directly. So thekey in the put() function is key of high-
level events, while thevalue is the lower-level event. However,
theget() function still works the same way, returning the event
data associated with thekey. This is because we use the proac-
tive approach to propagate events. Lower-level events are pushed
to higher level event processors using theput() function, rather
than the event processors fetching the lower-level events using the
get() function. Instead, theget() function is used only to per-
form a regional query. After a higher-level event processor receives
lower-level events as input, it may store the lower-level events lo-
cally for the purpose of time-related event aggregation, but these
lower-level events are not returned from ad-hoc query executions.

3.3 Temporal Rehashing
To further balance the transmission and computation load in the
network,Temporal Rehashingperiodically changes the hash loca-
tion of a given key to eliminate hot spots in the network. With
Temporal Rehashing, the locations of the complex event proces-
sors will be periodically changed, altering the nodes which receive
and store the events. Therefore,Temporal Rehashingload balances
the bandwidth, CPU, and power usage among nodes. The form of
the hash function for Regional GHT with Temporal Rehashing is
hash_rt(key, region, time).

time is the timestamp of the event. Just as DCP divides the sen-
sor region into regularly spaced grids, time is divided into periods
of known length. Two events with times in the same period (and
equal keys and regions) will be hashed together. If the period dif-
fers, the events will be hashed independently, though the returned
coordinates will still fall within the same geographic region.

3.4 Interest Area and Interest Interval

In space-related event aggregations, higher-level event processors
often express constraints between their lower-level events, rather
than absolute constraints. “Find to two people with 3 meters of
one another.” rather than, “Find any people in the auditorium.”
This implies that lower-level events may require forwarding to tiles
besides the ones they are located in, so that they may be matched
and high-level events can be computed.

Taking therunning_groupevent for example, when two people
are running near an edge shared by two tiles, they may be run-
ning close to each other but on different sides of the edge. If the
running_personevents are only sent to tiles containing their loca-
tions, thisrunning_groupevent will not be detected. To detect the
running_groupevent, the Running Group Detectors in both tiles
should be able to observe both of the tworunning_personevents.
We introduce the notion ofInterest Area, which represents the area
around a lower-level event’s location that may impact a higher-level
event processor. The size of the Interest Area is determined by the
spatial constraints that the higher-level events place on the lower-
level events. Figure 10 shows how Interest Area causes events to
be sent to multiple tiles.

�������������	
 ��
� ���
������� �������	
 ��
� ���
� �	
 �� ��
 �����	
 �� ��
 ���� ���	
 ����	
 �
�������������	
 ��
� ���
� �������������	
 ��
� ���
�

Figure 10: Interest Area causes events to be sent to multiple
higher-level event tiles to allow space-related event aggrega-
tions. Event 1’s Interest Area overlaps with 4 tiles, so it will
be sent into all 4 tiles. Event 2’s Interest Area only overlaps
with 2 tiles, so it will be sent into 2 tiles.

For the same reason, in time-related event aggregations, when tem-
poral rehashing is used, events must be sent to the hash locations of
different time periods to allow time-related aggregations. Taking
the running_personevent for example, when a person starts run-
ning right before the time of rehashing, and stops running running
immediately after the time of rehashing, the twoperson_detected
events happen before and after the rehashing time need to be sent
to the hash locations in both time periods. Analogously to the In-
terest Area, we introduce the notion ofInterest Intervalwhich is
the time interval around an event time that may affect higher-level
event processors. The length of the Interest Interval is determined
by the temporal constraints the higher-level events place on the
lower-level events. Figure 11 shows how Interest Intervals cause
events to be sent to the hashed locations for multiple time periods.

Interest Area and Interest Interval are used to guarantee that no

�������������� ��������� ��� � ��� ��!"������� � ��� ��!"�#!��� $ #!��� %������ � �����!"�#!��� &
Figure 11: Interest Interval causes events to be sent to event
processors of multiple time periods to allow time-related event
aggregations. The Interest Intervals for Event B and C overlap
with two time periods, so they will be sent to hash locations for
both periods. Event A’s Interest Interval only overlaps with its
own time period, so it will only be sent to the hash location of
its own time period.

events are missed because of the usage of Regional GHT and Tem-
poral Rehashing. Whenever a higher-level event has spatial or tem-
poral constraints on its dependent lower-level events, an Interest
Area or Interest Interval will be applied to the lower-level events.
When a higher-level event depends on more than one type of lower-
level events, each type of lower-level events can have different In-
terest Area sizes and Interest Interval lengths. The effects of Inter-
est Area and Interest Interval may be compounded. For instance, if
Event 1 in Figure 10 and Event B in Figure 11 are the same event,
it will be sent to4 ∗ 2 = 8 different hashed locations.

We now show how to map the event specification to the size of
Interest Area and the length of Interest Interval, taking therun-
ning_personevent as an example. Referring to the specification of
therunning_personevent in Section 2.3, if theMAX_SPEEDa per-
son can run equals to 10 m/s, andSRC_PERIOD_PD= 0.5s, the In-
terest Area for the dependentperson_detectedevents will be a cir-
cle around the person’s location with a radius ofSOURCE_PERIOD_PD
* MAX_SPEED= 0.5*10 = 5 meters, which means the locations
of two consecutiveperson_detectedevents that can trigger arun-
ning_personevent can be at most 5 meters apart. Here we assume
all the stereo camera sensors are synchronized in time. When a
person is running closer than 5 meters to the edge of a tile, this
person will also be reported to the Running Person Detectors in
the other tiles within 5 meters range. Therefore, when the person
runs into an adjacent tile, he/she will be immediately detected run-
ning by the Running Person Detector in the that tile. The interest
interval can be easily picked as two times the period of theper-
son_detectedevents being pushed to the Running Person Detectors,
which is 2*SOURCE_PERIOD_PD= 2*0.5 = 1 second.

In queries that match disparate events, such as “find a blue ball
within 10m of a red ball,” the sum of the Interest Areas for each
event must be 10m. Any appropriate combination may be selected,
with the expected rarity of each event and the reuse of each event
in other queries playing a role in selecting an appropriate trade-off.

3.5 Event Implementation
In order to realize the Hierarchical Event Processing and perform
complex event detection in practice, the base implementation of
Eventhas the following important fields:event_id, event_type, and
target_type. event_idis the event identifier. Events are identified
by the event name, or a system-wide unique identifier.event_type
indicates whether this event is primitive or complex.target_type
tells how the event processors are located in the network. Its value
can beself, ght or base. Whentarget_typeis self, there is
an event processor on each node, processing the lower-level events
generated on the current node. Whentarget_typeis ght, the net-

work field is divided into tiles. The fieldtile_sizeindicates the size
of the tiles. There is an event processor in each tile with its lo-
cation computed by the Regional GHT. If Temporal Rehashing is
used for this event, there will also be arehash_periodfield. When
target_typeis base, the event processor is on a base station, all
lower-level events are sent to the base station. There are addi-
tional target_id and target_locfields to provide the node_id and
geographic coordinates of the base station. This target_type is used
to simulate a global query issued from a base station for data col-
lection purpose.

Each event has a list ofsource_event_ids, which are all the lower-
level events that make up this event. The subevents can have dif-
ferent spatio-temporal constraints, so each lower-level event can
have a differently sizedinterest_areaand different length ofinter-
est_interval.

We assume that for any specific application, all events and their
dependencies are specifieda priori. The DCP framework lever-
ages this information and forms a hierarchically connected event
processing map as discussed in Section 3.2.

Each event processor has aprocess() function. This function is
performed whenever a lower-level event is received by the event
processor. This function aggregates lower-level events into higher-
level events, using local storage to temporarily store lower-level
events for temporal aggregation. When a new complex event is
produced, it is forwarded to the higher-level event processors that
are dependent on this event type.

3.6 Optimization
If the characteristics of the queries in the application is knowna
priori , such as the distribution of the query regions, the events being
queried, and the frequency of the queries, the tile size for Regional
GHTs can be optimized to minimize the network utilization.

Supposing an Interest Area of radiusR for the input events, there
exists an optimal tile size with side lengthL which minimizes (on
average) the total distanceD that an event must be transmitted to
reach all relevant event processors. WhenL is small, the event lo-
cation has a higher chance of being near a tile edge and the event
will be sent into multiple tiles which increasesD. WhenL is large,
the random location of the event processor may be far away from
the event location, which also increasesD. Our simulation shows
the experimental relation betweenD/R andL/R, as shown in Sec-
tion 4.2.

Another optimization can be done when the source events of a com-
plex event only come from the same node. In this case, the complex
event processor can be located at the exact node where the source
events are produced. This optimization eliminates the unnecessary
event delivery. For example, the People Chasing Detectors detect
people_chasingevents by comparing tworunning_groupevents
with same person ids, so thepeople_chasingevents can be stored
at the same node where the dependentrunning_groupevents are
produced, as shown in Figure 9. This optimization requires prior
knowledge of the queries in order to choose a hash function that
hashes the two queries together.

4. EVALUATION
We show the the advantages of in-network processing allow dis-
tributed constraint processing to producemoreefficient sensor net-
works while simultaneously decreasing their complexity. We show

how DCP compares to a centralizing algorithm by examining the
load distribution and total bandwidth consumed during event col-
lection. We separately evaluate the effectiveness of temporal re-
hashing by showing how DCP performs without temporal rehash-
ing.

4.1 Experimental Setup
We conduct experiments with theNS2 [8] network simulator. Ex-
periments are run in a 300m by 300m square with 200 randomly
placed and oriented stereo cameras, each with an 802.11 network
interface of 40m range. Several people are moving in the square
using a random way-point model with speeds between 0 and 7m/s
and no pause time. Our application seeks to find the runners, which
we define to be those persons moving faster than 5m/s. One per-
son is considered to be theguard, constantly chasing the closest
running person. Theguard starts idle and looks for anyone else
that is running. If there is at least one person running, theguard
immediately starts chasing (at 10 m/s) the closest runner. When
the guard catches the running person, it matches the speed of the
runner, so they are running close together. After the person being
chased changes to a speed lower than 5m/s, theguardbecomes idle
and looks for another running person to chase.

Objects can be seen by a camera if the objects are within 40m of
the camera, and the camera is orientated in the proper direction.
Cameras are assumed to have a 90 degree viewing angle and take
pictures twice per second. There is a Person Detector on each cam-
era node, producing aperson_detectedevent whenever the simu-
lated camera sees a person. Running Person Detectors are placed
in a grid of 100m by 100m squares with a rehashing period of 30s.
Running Person Detectors receive allperson_detectedevents with
a 2.5m radius Interest Area. Running Group Detectors and People
Chasing Detectors are placed in a grid of 150m by 150m squares
with rehashing period of 50s. The 10s Interest Interval assumes
a people_chasingevent is detected when two persons are running
close to each other for more than 5s.running_personevents are
sent to People Chasing Detectors every 5s and their Interest Area
is a circle with 10m radius. Whenever apeople_chasingevent is
detected, it is sent to the base-station located at (0,0). Each simu-
lation runs for 1000s. GHT uses the GPSR [4] routing protocol to
forward packets to destination locations. We turn off the GPSR’s
perimeter mode which is used to bypass holes in the network. In
our experiments, we chose a dense node deployment to allow bet-
ter camera coverage, so there are unlikely to be any holes in the
topology.

4.2 Tile Size Selection
We first analyze the effect of varied tile sizes on the performance of
Regional GHTs. A large tile to interest area ratio (L/R) requires
every GHT store to travel further, while a small ratio requires mul-
tiple stores due to Interest Area overlap with nearby tile edges. We
run the simulation for different ratios for the Running Person De-
tectors withR = 2.5m. Figure 12 shows the simulation result.
Since camera range and radio range are similar,person_detected
events can almost always be sent to hash location in one hop when
L < 40. The hop value shown in Figure 12 is discrete. Each hop
covers at most 40m in distance, the maximum radio range, which
is about16R. WhenL is larger than15R, the average event deliv-
ery distance in hops increases slowly. This is due to the effect of
discrete hops. We expect that the a faster increase will be shown
whenL is large compared to the hop distance, notR.

4.3 Bandwidth Distribution

Figure 13: Bandwidth distribution comparison of Centralized Processing (left), DCP (right), and DCP without Temporal Rehashing
(middle). Centralized algorithm sends all primitive events back to base-station. Both DCPs sendpeople_chasing events back to
base-station. Figures show the node traffic distribution createdby all event packets.

2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20
Performance on Total Bandwidth Usage

Number of Moving Objects

T
ot

al
 T

ra
ffi

c
(M

B
)

NO DCP
DCP WITHOUT TEMPORAL REHASH
FULL DCP

2 3 4 5 6
0

0.5

1

1.5
Performance on Node Bandwidth Usage

Number of Moving Objects

La
rg

es
t S

in
gl

e
N

od
e

T
ra

ffi
c

(M
B

)

NO DCP
DCP WITHOUT TEMPORAL REHASH
FULL DCP

Figure 14: The bandwidth usage comparison of centralized algorithm, DCP without temporal rehashing, and DCP. The number of
moving objects is increased from 2 to 6 (including theguard object). Left image shows the total traffic in the network. Rightimage
shows the traffic of the busiest node.

DCP distributes complex event processors throughout the network
using the Regional GHT. We test the network traffic with three
different detection techniques: Centralized Processing (No DCP),
DCP without Temporal Rehashing, and FULL DCP (with Tempo-
ral Rehashing). All three experiments detect thepeople_chasing
events at the base-station. Figure 13 shows the experimental re-
sults. The centralized algorithm, sending all primitive events back
to base-station without in-network aggregation, creates a serious
hot spot near the base-station. When DCP is used, the network
traffic is evenly distributed. The network traffic in the center of the
sensor field is more than the traffic on the edge of the field. This
is because the moving objects tend to move near the center where
more events are created. Without Temporal Rehashing, traffic still
tends to build up around several locations where the event proces-
sors are placed. By using temporal rehashing, DCP further balances
the network traffic.

It is worth noting that abstractions that allow neighborhoods or re-
gions of nodes to be defined would not allow purely local aggre-
gation. A technique similar to our Interest Area approach would
be required to find matches that span regions. This difficulty is a
core reason we avoid the intermediate notion of region and proceed
directly to data-centric event constraints.

4.4 Bandwidth Usage
Not only does DCP balance the network traffic, it also reduces the
number of radio transmissions because events are usually sent to
close destinations and require fewer hops. Figure 14 shows that
DCP cuts the total network traffic by about 65%. Equally impor-
tant, the traffic of the busiest node is much lower under DCP and
grows slowly with additional moving objects, prolonging network
lifetimes. The adoption of Temporal Rehashing further reduces the
requirements on the most heavily loaded node by sharing the work
of event processing over time.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

L/R

N
um

be
r

of
 H

op
s

AVERAGE EVENT DELIVERY DISTANCE WITH DIFFERENT TILE SIZE

Figure 12: Simulated relation between the average delivery dis-
tance (counted in hops) of theperson_detected events and tile
side lengthL. When the radius of Interest AreaR is fixed, the
average event delivery distance reaches its minimum of about
1.7 hops whenL is approximately 15R.

4.5 Node Failure
The fault-tolerant aspect of GHTs is discussed in detail in [10].
Here we show the high-level impact of this fault-tolerance. We
show how the ability of the sensornet to detect high-level events
is affected by the loss of camera and radio nodes. Our example
object tracking application depends on radio connectivity, but also
on camera coverage to detect the low-level events in the first place.
As cameras and radios are lost, detection suffers.

We run the simulations with fewer nodes and report the number
of complexpeople_chasingevents detected. Dead nodes are un-
able to generateperson_detectedevents nor communicate through
radio. We examine the low-levelperson_detectedevents detected
by the live nodes to calculate the ideal number ofpeople_chasing
events that could possibly be detected in each simulation. We show
the actual number of high-level events detected as a measure of per-
formance. We also repeat the simulation with nodes that function
as radio nodes, but lack cameras. This separates the influence of
network connectivity and sensor availability. Figure 15 shows that
at densities over 70% of our baseline, there is little effect on the
aggregation abilities of DCP. In all cases, about 5-8% of high-level
events are missed, perhaps due to network partition or congestive
losses. Below 70%, radio coverage becomes a problem. If the
“dead” cameras continue to function as radio nodes, DCP performs
well, still finding about 90% of potential complex events. However,
if “dead” nodes have neither camera nor radio, the success rate of
DCP detecting complex events degrades to about 75%.

5. RELATED WORK
This paper presents a sensornet programming model, including a
declarative language to express events with spatio-temporal con-
straints and an efficient event detection framework to provide run-
time support for the programming model. In this section, we com-
pare our work with other existing work in the area.

Many approaches have been proposed to provide programming ab-
straction and communication models for sensor networks. Our
work differentiates itself from existing approaches in its focus on

0 10 20 30 40 50
40

50

60

70

80

90

100
Performance on Node Density

Number of Dead Nodes (%)

N
um

be
r

of
 C

om
pl

ex
 E

ve
nt

s

IDEAL CASE
FULL DCP WITH RADIO ENABLED
FULL DCP

Figure 15: The effect of node density on DCP effectiveness.
Simulations are run with different node densities, from 200
cameras in a 300m by 300m field, down to 100 cameras. With
fewer cameras, fewer high level events are detected due to lack
of camera coverage, and decreased radio connectivity. The top
line show how many high-level eventscould be detected if all
low-level events were aggregated. The middle line shows how
many high-level would be detected if some percentage of cam-
eras, but not radios, are turned off. The bottom line shows the
effect of complete outages (camera and radio). Results are the
average of five simulations.

removing any sensor-oriented aspects of the programming abstrac-
tions.

Our programming model resembles the database-based approaches,
such as TinyDB [6] and Cougar [15], which express sensor data
of interest in a network-independent way using SQL-style queries.
Comparatively, our programming model is built in a similiar way
of those in the active database area [2, 3, 9] and is tailored to allow
the expression of events with complex spatio-temporal constraints.

EnviroSuite [5] is an environmentally immersive programming frame-
work which uses object-based model to abstract interactions be-
tween physical objects and the runtime environment. Our DCP
framework is event-based and focuses on expressing hierarchical
constraints. Hood [14], Abstract Regions [13], and Regiment [7]
present sensor programming models based on groups of nodes de-
fined by their physical proximity or network topology. One may
view these groups as sets of nodes that follow constraints that may
be laid out in our declarative language. We believe that event con-
straints represent a similar level of abstraction with the added ben-
efit of removing the need to consider nodes at all when specify-
ing application behavior. Event constraints may express “a red ball
within 10 meters of a blue ball,” while regions based on node mem-
bership cannot, if the node may detect objects at a distance.

The DCP framework decouples event location from node location
by extending GHTs [11] as the address mechanism. GHTs were in-
troduced to provide Data-Centric Storage (DCS) [10] for wireless
sensor networks. In DCS, events are hashed to geographic loca-
tions by event names and stored at the closest node to the hashed
location. GHT uses GPSR [4] to route packets to the destination
locations. DCP extends GHTs toRegional GHTswhich preserve

spatial locality in events and allow local operation despite large-
scale network partitions.

6. CONCLUSION AND FUTURE WORK
Programming sensornets is well recognized as a hard problem, and
data-centric techniques have emerged as a way of taming the asso-
ciated complexity. In this paper, we have described an area in which
existing sensornet programming paradigms have not yet embraced
a data-centric approach. We have filled that gap with a distributed
constraint processing engine for constructing complex events from
subevents. Details of the sensor network are abstracted away so that
constraints may be expressed directly between events, rather than
through an intermediate abstraction based on the node location or
attributes. We believe this separation is particularly important for
future sensornets that will integrate more node that sense events at
a distant.

Despite the increased level of abstraction, our approach to dis-
tributed constraint processing is efficient, scalable, and fault-tolerant
because it uses local resources to process local events.

7. REFERENCES
[1] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A. Shafer.

Easyliving: Technologies for intelligent environments. In
HUC, 2000.

[2] S. Chakravarthy and D. Mishra. Snoop: An expressive event
specification language for active databases.Data Knowledge
Engineering, 14(1), 1994.

[3] S. Gatziu and K. R. Dittrich. Detecting composite events in
active database systems using petri nets. InRIDE-ADS, 1994.

[4] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. InMobiCom ’00: Proceedings
of the 6th annual international conference on Mobile
computing and networking. ACM Press, 2000.

[5] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic.
Envirosuite: An environmentally immersive programming
framework for sensor networks.ACM Trans. Embedded
Comput. Syst., 5(3), 2006.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: A tiny aggregation service for ad-hoc sensor networks.
In OSDI, 2002.

[7] R. Newton, G. Morrisett, and M. Welsh. The regiment
macroprogramming system. InIPSN, 2007.

[8] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[9] N. Paton and O. Diaz. Active Database Systems.ACM
Computing Surveys, 1(31):63–103, 1999.

[10] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu. Data-centric storage in sensornets with
ght, a geographic hash table.Mob.Netw.Appl., 8(4), 2003.

[11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: a geographic hash table
for data-centric storage. InWSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor networks
and applications. ACM Press, 2002.

[12] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy,
A. Nádas, G. Pap, J. Sallai, and K. Frampton. Sensor
network-based countersniper system. InProc. SenSys, 2004.

[13] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. InNSDI, 2004.

[14] K. Whitehouse, C. Sharp, D. E. Culler, and E. A. Brewer.

Hood: A neighborhood abstraction for sensor networks. In
MobiSys, 2004.

[15] Y. Yao and J. Gehrke. The cougar approach to in-network
query processing in sensor networks.SIGMOD Record,
31(3), 2002.

