Declarative Temporal Data Models for
Sensor-Driven Query Processing

Yanif Ahmad, Ugur Getintemel
Brown University
{yna, ugur}@cs.brown.edu

ABSTRACT

Many sensor network applications monitor continuous phe-
nomena by sampling, and fit time-varying models that cap-
ture the phenomena’s behaviors. We introduce Pulse, a
framework for processing continuous queries over these
continuous-time data models. Pulse allows users to declara-
tively specify both their queries and models, and transforms
these queries into simultaneous equation systems, which in
many cases are significantly cheaper to process than a stream
of discrete tuples. Pulse is able to guarantee user-defined
error bounds between query results from continuous-time
data models and sampled data, including cases of null re-
sults. We present a high-level overview of the design and
architecture of Pulse and propose several query optimiza-
tion techniques that are novel to our context, such as the
simplification of our equation systems. We also discuss our
plans for extending Pulse to support several novel model
types, including differential equations and time series, and
outline an abstraction to support query processing on these
classes of models.

1. INTRODUCTION

Sensing devices sample physical processes to capture their

changing behavior over time. The sensor network and database

communities have argued for relational processing of these
discrete samples in both sensor databases and stream pro-
cessing engines. We argue that current processing tech-
niques do not capture that physical processes are continuous,
that they exist at every point in time regardless of the sam-
pling mechanism and should be queried as such. Research in
the natural sciences relies heavily on data analysis tools in
deriving models to compactly represent and accurately re-
construct the behavior of these continuous-time processes.
We adopt the position that stream processing engines should
support the declarative specification of input attributes as
continuous-time models, and should leverage the structure
of these models to improve query processing efficiency.

In this paper, we introduce Pulse, a stream processing
framework that is capable of applying relational operators,
including filters, joins and aggregates, on input streams with
attributes represented as polynomials of a time variable.
Continuous-time polynomials are a simple class of algebraic
models that have been used to approximate many physical

This work has been supported in part by the National Science Foundation
under grants I1S-0325838 and IIS-0448284.

Proceedings of the 4th International Workshop on Data Management for
Sensor Networks (DMSN’07), Vienna, Austria, 2007.

Copyright is held by the author(s).

processes, such as the temperature of a specific region, the
wind speeds observed by a weather station, and the trajec-
tory of cars on a highway segment. Pulse transforms a regu-
lar continuous query operating on discrete tuples to simulta-
neous polynomial equation systems operating on continuous-
time models that it can solve efficiently, to reduce computa-
tion overhead and improve system throughput. Pulse is able
to guarantee error bounds in the approximation provided
by the polynomial inputs relative to actual sensor samples.
Pulse enables users to specify error bounds at query out-
puts, and inverts these to corresponding bounds that may
be validated at query inputs for efficient bound checking.

We perceive that models of data attributes constrain the
input data, in a similar fashion to the constraint databases
and constraint programming fields. We propose to explore
these directions by first extending Pulse’s transformation
to produce a single global equation system for the whole
query rather than operator-centric equation systems. We
may then apply static and run-time redundancy elimination
techniques to produce a simpler equation system.

We outline initial work on extending Pulse’s expressive ca-
pabilities to support other types of attribute models such as
differential equations and time series. We propose integrat-
ing a computer algebra system to manipulate the internal
mathematical representation of these datatypes. These ma-
nipulations are critical in determining the feasibility of an-
alytical solutions to our equation systems. While analytic
methods will be more likely to provide clear gains in pro-
cessing overheads, we also consider numerical methods for
scenarios where analytic methods are not viable. We present
a datatype interface, based around the observation that all
model types are capable of being sampled, and discuss plans
to build a common numerical method for performing query
processing across different model datatypes.

The remainder of the paper is laid out as follows. Section 2
briefly describes Pulse’s basic system model, including the
data, query and result models, and a high-level overview of
the current architecture. Section 3 discusses our proposals
for optimizing Pulse’s query processing capabilities. Sec-
tion 4 describes our goals of extending Pulse’s support for
different model types. We note related works and techniques
in Section 5, before concluding.

2. PULSE OVERVIEW

In this section we present an overview of Pulse, primar-
ily covering the application capabilities it provides in terms
of its data stream model, its support for queries and the
semantics of query results, and its basic architecture.

Schema: A = {z,v}, B={y,v,a}

Query: SELECT A.x within [-€,€]
from A MODEL A.xz = A.x + At
JOIN B MODEL B.y = B.ut + B.at?
ON(A.x < B.y)

Transformation Description
Az < By
Axz—B.y<0 difference equation

Az + Awt — (Bt + B.at?) <0 substitute models
Az + (Av— Bw)t— B.at? <0 factor time variable ¢

Figure 1: Pulse transforms predicates in selective oper-
ators to determine a system of equations whose solution
yields the time range containing the query result.

Xy m.=a +ht

X<y

r‘ﬂ-:

t t
Figure 2: A geometric interpretation of the continuous
transform, illustrating predicate relationships between
models for selective operators, and piecewise composi-
tion of individual models representing the continuous in-
ternal state of a max aggregate.

2.1 Data Stream Model

We classify data stream attributes as one of modelled
attributes, unmodelled attributes, or key attributes. Our
framework supports two modelling modes, one where we as-
sume data is modelled externally and specified to Pulse by
MODEL-clauses, as illustrated in Figure 1. In this mode, we
assume model parameters are passed into the system with
input tuples and refer to this as online, or predictive process-
ing. The second mode assumes internal modelling, where we
model the data ourselves through a regression operator for
offline, or historical processing. We assume attribute mod-
els are polynomial functions of a time variable, for example a
model for an attribute a is of the form: a = Ef cit’. Here c;
are model coefficients that are assumed to be present in the
input stream. In addition, we assume that users explicitly
identify key attributes in the stream declaration and that
attributes not defined as keys or models are unmodelled.

Our models are piecewise polynomials, made up of seg-
ments, defined as a pair of temporal attributes represent-
ing a validity range, along with model coefficients for that
range: ([t tu], {ci}). We instantiate segments from input
tuples, with the valid time range assigned depending on
the modelling mode. We consider an update model for seg-
ments, allowing consecutive segments to overlap temporally.
We assume a default data model for unmodelled attributes,
namely that unmodelled attributes are constants through-
out a segment’s valid time range.

2.2 Query Model

The key contribution of Pulse is that it operates on seg-
ments to determine when queries produce outputs by ex-
ploiting segments’ continuity properties. Pulse provides a
declarative query interface by transforming standard stream

queries into continuous-time equivalents. We represent queries
internally as a system of equations, and define transforma-
tions for standard query operators such as filters, joins and
aggregates into these equation systems. The solutions to
these equation systems yield the time intervals at which
predicates are satisfied in selective operators (i.e. filters and
joins), or there is a change in the internal state of an ag-
gregate (e.g. min/max aggregates). Correspondingly, the
lack of a solution implies a null intermediate result. Our
query model also supports key attribute and unmodelled
attribute processing, but we omit their details due to space
constraints. We now describe the equation systems. Filter
and join operators apply predicates defining constraints on
the relationships of the input relations’ attributes. We as-
sume this is of the form: z1Riy1 A ... A Tm Rmym. Given
polynomial modelled attributes, we may apply three trans-
formation steps to construct an equation system:

1. Rewrite in difference form: Vi.x; — y; R;0

2. Substitute attribute models: Vi.z;(t) — y;(t) R0

3. Factorize continuous-time functions: Vi.(z; —y;)(t) R0
The above predicate defines the following equation system:

zf —y? zf —yi t° Ry
: : 0=DuytRO
20— L 2l —yd, td Ry

Here t is the continuous-time variable parameterizing at-
tribute models, and R a vector of relational operators. By
solving for this variable, we are able to find intervals for
which the predicate is satisfied, providing the input data
fits its prescribed model. Figure 2 provides a geometric in-
terpretation of a predicate on a polynomial.

We propose a similar transformation for aggregate oper-
ators. The key intuition here is that aggregates maintain
internal state, that is only updated on select input tuples
for some aggregation functions (e.g. min/max). Thus our
equation systems determine when these state updates oc-
cur. These types of aggregates compare the input and inter-
nal state, for example a min aggregate compares the input
with the minimum value seen within a window. This de-
fines an update predicate: x1Ri181 A ... A Zm RimSm Where s;
represent internal state attributes. Figure 2 illustrates the
internal state attribute as a piecewise polynomial for a max
aggregate. This predicate defines an equation system simi-
lar to the one above. For non-selective aggregates, such as
sum, we propose the computation of window functions that
perform temporal aggregation. These window functions are
continuous functions, parameterized by a window endpoint
and a window length, that compute aggregate values by us-
ing equivalent continuous aggregates (e.g. an integration
operator for sum aggregates).

2.3 Query Result Model

Pulse produces discrete results from its query processing,
preserving client interfaces dependent on query results, by
discretizating continuous-time models via sampling at the
output streams. We require user-defined sampling rates to
drive this discretization, but briefly note that in some cases
these may be inferred from the query, for example for sliding
window aggregates, the sampling rate is defined by the slide
factor. Pulse also provides a mechanism for users to express
error bounds in query results, which in turn are used inter-
nally to ensure that queries are only processed when current

query results are not sufficiently accurate. Pulse supports
both absolute errors expressed as ranges, and relative errors
expressed relative to results computed from models, and en-
sures that the differences in continuous and discrete query
processing results satisfy these bounds. Given the definition
of a bound at query outputs, Pulse inverts the bound to the
query’s inputs. This enables bounds to be checked entirely
at query inputs and eliminates the need to perform discrete
processing on input tuples. However inverting bounds limits
our technique to invertible expressions, and requires special
handling for non-invertible operators such as joins and ag-
gregates. For these non-invertible operators, we explicitly
maintain query lineage that associates intermediate results
with their input segments, subsequently allowing us to dis-
tinguish inputs when inverting bounds. Error bounds are
only well-defined in terms of actual query outputs, requir-
ing us to explicitly handle the case of nulls in intermedi-
ate results. We define slack as a metric that indicates a
solver’s proximity to producing a solution when an input
model causes nulls.

2.4 Pulse Architecture

Pulse transforms each individual operator to create a
continuous-time query composed of equation systems that
consumes segments and produces segments. Pulse solves its
equation systems for every new input model. Here a new
input model refers to new values for the attribute models’
coeflicients (i.e. the set {c¢;} for any attribute) rather than
the symbolic form of the model. We assume the symbolic
form of the model remains constant throughout query exe-
cution. We have implemented Pulse in Borealis [1], extend-
ing the core operator set with several custom operators to
implement the systems of equations described above.

Continuous-Time Operators. The two key operator ab-
stractions in Pulse’s implementation are the differencer and
solver operators. The differencer computes the difference
coefficients Dy, defined in Section 2.2, and is implemented
as a map or join operator depending on the number of input
streams belonging to the transformed operator. In the case
of aggregate transformations, the differencer is paired with
a stateful operator capable of maintaining an aggregate of
multiple segments for the min,max functions, and comput-
ing window functions for the sum,avg functions. The solver
operator takes a difference coefficient matrix as its input,
and computes interval solutions to our polynomial equation
system. Our solving method finds polynomial roots, and
computes the relevant intervals between root pairs by test-
ing midpoint values according to the equation’s predicate.
We then filter intervals to common solutions across all equa-
tions. In the presence of no solutions, denoting null inter-
mediate results, we pass the difference coefficient matrix to
the query inverter component to compute slack. Figure 3
provides a high-level overview of this dataflow.

Error Validation via Query Inversion. Pulse’s imple-
mentation includes a query inverter for managing the ap-
proximation provided by models. The inverter’s role is to
compute a set of operator input bounds that preserve op-
erator output bounds. We instantiate an inverter for each
operator in the original stream query to perform query inver-
sion on a per-operator basis. Inverters explicitly maintain
its associated differencer’s input segments, and split bounds
from upstream inverters onto these input segments. We use
heuristic-driven split operations to apportion bounds across

Original query

Py NS

Validator

Differencer Solver | Differencer Solver 1 sampler

Inverter Inverter Accuracy spec
PULSE transformation

Figure 3: Pulse’s continuous-time processor compo-
nent’s dataflow. Models are either determined internally
or given as inputs to the system, and are processed as
first-class elements.

multiple input segments for inverting the functionality of
joins and aggregate operations. We compute slack in the
presence of nulls as intermediate results. This requires com-
puting the minimal value of the difference coefficients within
the segment as the slack, and initiating a similar inversion
process to that of query result inversion. For polynomi-
als, computing this minimal requires taking a derivative and
finding a solution where the derivative is zero (and the sec-
ond derivative is positive). We instantiate a minimizer oper-
ator to compute slack for each transformed operator. These
components are also illustrated in the dataflow in Figure 3.

Processing Efficiency. We briefly present a experiment
from Pulse’s current implementation using a moving-object
query on a naval vessel dataset containing latitudes and lon-
gitudes obtained from the Automatic Identification System
(AIS). Our query attempts to detect vessels following one
another by checking their proximity over a period of time:

Schema: S = {vessel id, time, lat, lon, lat speed, lon speed}
Query: find neighbouring vessels over a given window

select Candidates.idl, Candidates.id2,
avg(dist) within [-1%,1%]
from
(select S1.id as idl, S2.id as id2,
sqrt (pow(S1.x-52.%x,2) + pow(S1.y-52.y,2)) as dist
from S[size 10 advance 1] as S1
join S as S2[size 10 advance 1]
on (S1.id <> S2.id))
as Candidates[size 600 advance 10]
group by idl, id2 having avg(dist) < 1000

1500 _ .
=A=Tuple processing Parity+”
1400/, == Segment processing L

1300

Throughput (tuples/sec
(=] (=] Qo Qo o [=]
o o o o o o

.

[}
=}
S

50,

1000 1500
Stream rate (tuples/sec)

Figure 4: Pulse’s processing efficiency on a naval vessel
moving-object application.

Figure 4 shows Pulse’s end-to-end throughput on the AIS
application, for both continuous (segment) processing and
discrete (tuple) processing. We see that Pulse scales past a
throughput of 700 tuples/sec, where standard stream pro-
cessing exhausts system capacity, and is able to nearly dou-
ble throughput at approximately 1400 tuples/sec.

3. QUERY OPTIMIZATION

The focus of these previous sections have been to moti-
vate the benefits of factoring in polynomial attributes into
query processing and deriving an initial processing strategy.
We now refine this processing strategy by considering opti-
mization opportunities unique to our context.

3.1 Whole-Query Optimization

Whole-Query Linear System Model. We presented
Pulse as an operator-by-operator translation from a stan-
dard stream operator into a continuous-time operator. This
clearly ignores any inter-operator optimization opportuni-
ties, such as operator reordering techniques and mechanisms
to exploit sharing amongst operators. We define a single sys-
tem of equations representing the query, from the composi-
tion of individual operators’ equation systems. This may
be accomplished by stacking each equation system and re-
lational predicate. We briefly remark on several properties
of this global equation system. First, the dataflow between
query operators is implicitly present in the equation system
as dependencies between different equations, specifically the
coefficients of one equation may be defined as functions of
another equation’s coefficients, implying our global equation
system is not full row rank. Some operators are defined en-
tirely as coefficient operations, for example a sum aggregate.

Coefficient and Constraint Elimination. The global
equation system is also an equation system of a single vari-
able, namely the time variable. Thus each equation may
be viewed as performing a filtering of the time domain, re-
stricting the set of values the time variable may take on.
This motivates our first optimization mechanism, where we
attempt to detect subsumption between equations and elim-
inate these redundancies. We consider two stages where
we may detect subsumption relationships. First we apply
a static approach where we eliminate equations subsumed
symbolically by others in terms of their coefficient expres-
sions. This is effective in the presence of numerous query
operators that are dependent on similar input attributes.
We perform the static analysis prior to query evaluation,
incurring a one-time cost. The second stage of detecting
subsumption occurs at run-time, where we inspect the nu-
merical form of equations whenever their coefficient expres-
sions are re-evaluated. Recall that coefficient expressions are
evaluated with every model invalidation (due to erroneous
modelling). Thus we maintain an index structure for com-
paring the numerical forms of equations to eliminate redun-
dancies upon updates to arbitrary equations. We envisage
an index that supports a lookup method to determine if a
new equation is subsumed by any existing equation.

3.2 Scheduling Continuous-Time Queries

In addition to optimizing queries based on their structure,
we consider optimizing the evaluation strategies for contin-
uous queries in our stream processing engine.

Equation Scheduling. One challenge we face is that of
excessive intermediate segmentation during query process-

ing. This issue is particularly important for stream oper-
ators with multiple inputs (joins and unions) or multiple
models (aggregates over multiple keys) due to the interac-
tion of different stream segmentations. We propose batch-
ing to exploit redundancy due to updates in input segments,
and commonality in output segments from unnecessary seg-
mentation (such as with semi-joins, and min/max aggre-
gate operators). We envision a statistical solution to decid-
ing batching characteristics such as how many inputs and
outputs to batch. We rely on the average update interval
on a stream for determining input batching durations, and
the average segmentation of a single input model for out-
put batching durations. This reduction in the intermediate
segmentation will provide a tradeoff between our engine’s
throughput, and the latency of producing query results.

Dynamic Filtering Plans. Following equation elimina-
tion, we solve each equation to filter the time variable. We
consider the problem of determining an optimal solving or-
der amongst equations. This problem involves identifying
equations that indicate an infeasible solution as early in the
evaluation order as possible, to ensure minimal wasted work
solving equations. We limit the set of potential orders to
those that respect dataflows between equation coefficients.
We adopt a cost-based approach to determining the optimal
order, considering a metric based on each equation’s reduc-
tion of the time variable’s domain rather than the classical
notion of selectivity.

4. EXPRESSIVE MODEL TYPES

We view the polynomials described so far as one type of
model, and have described how to support polynomials as
a first-class datatype in Pulse. We now focus on challenges
in providing database support for other model types such
as differential equations and time series, and how these may
be represented as datatypes. Our goal here is not to present
a formal discussion of expressiveness, nor to provide a com-
prehensive listing of all factors involved in supporting these
datatypes, but to convey initial insights into the problem.
We believe modelling datatypes should not be black boxes,
rather they should expose sufficient semantics for query op-
timization, similar to enhanced abstract datatypes [11]. We
intend to investigate designing an extensible interface and
mechanisms for query optimization as future work. One key
challenge is to determine how we may leverage mathemati-
cal properties of these datatypes in defining query processing
mechanisms and performing query optimization. For exam-
ple, we consider it critical to determine the feasibility of an
analytical solution due to the significantly simplified query
processing and improved performance it provides, and envi-
sion accomplishing this with the aid of a computer algebra
system (CAS) integrated with our stream processor.

4.1 Iterative Solving Abstraction

Our data type interface is designed around two common
properties of the aforementioned models. First we remark
that each type of model supports a sampling function that
we may use to drive a numerical solver. Next, we observe
that numerical methods and solvers are predominantly it-
erative processes, and that this iteration is often driven by
the semantics of the model, rather than data flow. Thus
our abstraction decouples control flow from data flow to en-
able the iterative behavior required to numerically evaluate
models. Our framework exposes the following methods for

a datatype to implement (in C++ syntax):

union InputValue { Tuple; Window; }
union TimeValue { TimePoint; TimeRange; }
union SolutionValue { Point; Segment; }

model_solver:
void initModel(InputValue, TimeValue);
boolean hasSolutions();
pair<TimeValue, SolutionValue> getSolution();
SolutionValue getSolution(TimeValue);
boolean checkSolution(Segment, RelOp)
Segment finalModel(TimeValue) ;

As part of future work, we intend to investigate both con-
version abstractions that allow one model type to be cast
to another, in addition to a modelling abstraction, where
model types may be built or learned incrementally, although
it is unclear how much commonality there is across types
in these procedures. With this model-specific solving inter-
face, we are able to define a standard numerical query solver
based on the evaluation of difference predicates. Our gen-
eral solver invokes the methods defined by each model type
above, from the following pseudocode:

query_solver:
void solve_unary_equation(input):
solver.init (input)
while (solver.hasSolutions())
solnTime, solnVal = solver.getSolution()
if (predicate(solnVal))
result = solver.final(solnTime)
emit(solnTime, result)
terminate ()

void solve_binary_equation(inputA, inputB):
if solverA.hasDifference(solverB)
solve_unary_equation(
solverA.difference(inputA, inputB))
else
solverA.init(inputd), solverB.init(inputB)
while (solverA.hasSolutions())
solnATime, solnAVal = solverA.getSolution()
solnBTime, solnBVal = solverB.getSolution(solnATime)
if (predicate(solnAVal, solnBVal))
result = output_attribute(
solverA.final (solnBTime),
solverB.final (solnBTime))
emit (solnBTime, result)
terminate ()

The above example shows symbolic manipulations with
the hasDifference and difference functions. We show
a difference equation with two variables being solved as a
difference equation of one variable by computing a single
model (segment) representing that difference. This solver
also highlights other interesting challenges, including syn-
chronization (note solverB samples at the time value yielded
by solverA) and solver termination policies. Solver termi-
nation concerns how an optimizer might take advantage of
mathematical properties to limit the solutions produced to
exclude those that cannot be query results. Processing
queries involves evaluating the above methods for each equa-
tion in the whole-query equation system representation, and
filtering to common solution time ranges where each equa-
tion is satisfied. Note our interface is closed, that is our
solver produces the same model type as its input.

We now present example interface implementations.

Temporal Polynomials. Figure 5 provides a high-level
functional description of an API implementation for Pulse’s
current polynomial equation system solver, supporting the

initModel : set input segment as state

determine multiplicity of roots
hasSolutions : return if any roots remain
getSolution : return time range and segment

between last root and current root
checkSolution : check if entire segment
satisfies relational operator

finalModel : return input segment

Figure 5: Example polynomial type sampling function.

modelling of attributes as continuous functions of a time
variable. A key property of this type of model is that we are
able to simplify the internal representation of the model for
the basic arithmetic operators +, —, * (and in some cases /).

4.2 Differential Equations

We consider stream attributes represented by n-th order
ordinary, linear differential equations of the form:
D"z; = Z?_l ¢;j(x;)D?x;, where D is the differential op-
erator. We provide a simple example of a query specify-
ing an input attribute as a differential equation, capturing
a simple carbon dating application. Here the number of
carbon-14 molecules in a material is modelled by a differen-
tial equation governing the rate of decay of these molecules.
We omit the error bound specifiers for presentation clarity
in the remaining examples in this section.

Schema: carbons = {material, amount}
Query: find when #carbon-14 isotopes drops below a
threshold, for each material.
Model: dn/dt = —An, where n is the #carbon-14 isotopes,
and A the decay constant.

select material, t, amount
from carbons model

d(amount)/d(t) = - A\ * amount
where amount < c

Figure 6 briefly describes the implementation of a solver
performing a numerical approximation of an ordinary dif-
ferential equation. In terms of interface design, the critical
difference between the solver requirements for this type of
model and polynomial models is that we are only able to
sequentially compute solutions, where we are provided with
an initial value satisfying the equation, and numerically ap-
proximate subsequent values from previous approximations
of derivatives.

initModel : i) set input segment as coefficients
and initial value

ii) set time range start as eval point
hasSolutions : i) check if eval point is at

time range end

ii) check for more solution ranges given|
solving termination policy

i) evaluate an Euler integration step
updating derivative coefficients

ii) advance eval point

checkSolution : floating point comparison of solutions
finalModel : return input segment

getSolution :

Figure 6: Example differential equation solver.

We have only discussed a small subset of the many classes
of differential equations that are used in real-world applica-
tions. Other common types include stiff differential equa-
tions, and more complex partial differential equations. Due
to their prevalence in the physical sciences, there are a large

number of high-quality implementations of differential equa-
tion solvers, including commercial tools such as Matlab,
and opensource tools such as SUNDIALS [7]. We believe
it is critical from a software engineering perspective to reuse
these tools, subject to a match of the tools’ interfaces to
ours (for example we could use an off-the-shelf solver to find
all solutions within the initModel function, but this would
unnecessarily generate solutions).

4.3 Time Series Models

We consider the standard ARMA, ARIMA and SARIMA
time-series models, and assume we are given the coefficients
of the various components of these models. For example, an
attribute x represented by an ARMA (w,q) model is given by:
@ =7 aixi—i+; bies_i, where {a;}, {b:} are coefficients
present in the input streams allowing us to internally con-
struct a time series datatype. Many sensor devices generate
time series data, and we present an example of a continuous
query monitoring seismometers to detect earthquakes near
densely populated regions, as found in disaster management
applications such as GDACS [4].

Schemas: Population = {lat, lon, population, needs index}
Seismometer, S = {time, lat, lon, amplitude, a1, az, b1,b2}

Query: find significant earthquakes near population centers

Models: S.ampl =3, S.a; x S.ampli—; + 3, 5.bi X €14

select lat, lon, mag from
(select alert_score(pop, mag, gn), mag, P.lat, P.lon from
(select lat, lon, max(amplitude) as mag from
stream S[size 10 advance 2]
model S.amplitude = timeseries(ar(al, a2), ma(bl, b2))
group by lat, lon)
as EQ join Population P
on (dist(EQ.lat, EQ.long, P.lat, P.lon) < 100km))
as PotentialAlerts
where alert_score > 2 and mag > 6

Figure 7: Earthquake detection on seismic data repre-
sented by time series models.

In a similar manner to differential equations, evaluating
time series requires that we use a window of existing at-
tribute values to compute the next value. This limits time
series evaluation to generating a single point per model. We
use a time series within its associated valid time range by
using generated points themselves as part of the window.
Furthermore, the nature of an autoregressive process is to
use every input tuple to compute coefficients, raising an in-
teresting question for future work of how we may combine
a modelling step and solving step with each iteration.

S. RELATED WORK

Recently, there has been significant interest in support-
ing modelling techniques in database systems for purposes
ranging from data cleaning [9], regression and interpola-
tion [2], to predicting inputs for query processing [8]. Scien-
tific databases have consistently looked at various types of
data including arrays [10], and time series and spectra [13].
Girod et al. [3] recently presented a stream processing archi-
tecture focusing on systems issues and programmatic sup-
port for signals as a first-class datatype in the Wavescope
system. Time series databases provide basic functionality to
construct and add samples to time series, in addition to pro-
viding query functionality [14] that differs quite significantly
from the relational query processing we target. Moving ob-

ject databases have developed highly customized algorithms
and data structures to support query processing over trajec-
tories [6]. Finally, constraint databases such as DEDALE [5]
have considered representing relations as constraints, and
processing queries via a constraint engine. Srivastava [12]
describes techniques to exploit subsumption and indexing
in constraint databases. While these works have inspired
us, we are primarily interested in understanding the basic
challenges involved in relational query processing of time-
varying data types, and the uses of these data types in his-
torical and predictive applications. Our contribution is that
we have developed a general stream processing framework
that is capable of supporting core relational operators in a
common representation as simultaneous equation systems.
Furthermore, related works have not studied the problems
such systems face under the online detection of errors, nor
do they extend to other model types.

6. CONCLUSION

We have outlined Pulse, a stream processing framework
designed to handle declarative specifications of both queries,
and the time-varying behavior in query inputs. The novel
features of Pulse includes its behind-the-scenes transforma-
tion of declarative queries into simultaneous equation sys-
tems and query processing error validation at the input
streams. We have implemented these features of Pulse
in Borealis [1]. Now, we propose several query optimization
techniques including representing a whole query as a single
equation system, rather than a per-operator structure. We
also consider the question of how to support model types
such as differential equations and time series, and briefly
outlined a datatype abstraction that we hope to use in a
common numerical solving method across model types.

7. REFERENCES

[1] D. Abadi et. al. The design of the Borealis stream
processing engine. In CIDR, 2005.

[2] A. Deshpande and S. Madden. MauveDB: supporting
model-based user views in database systems. In SIGMOD,
2006.

[3] L. Girod et. al. The case for a signal-oriented data stream
management system. In CIDR, 2007.

[4] Global Disaster Alert and Coordination System (GDACS).
http://www.gdacs.org/.

[5] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. The
DEDALE prototype. In Constraint Databases, 2000.

(6] M. Hadjieleftheriou et. al. Complex spatio-temporal
pattern queries. In VLDB, 2005.

[7] A. C. Hindmarsh et. al. Sundials: Suite of nonlinear and
differential /algebraic equation solvers. ACM Trans. Math.
Softw., 31(3), 2005.

[8] A. Jain, E. Chang and Y. Wang. Adaptive stream resource
management using Kalman Filters. In SIGMOD, 2004.

[9] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin.
Adaptive cleaning for rfid data streams. In VLDB, 2006.

[10] A. P. Marathe and K. Salem. A language for manipulating
arrays. In VLDB, 1997.

[11] P. Seshadri. Enhanced abstract data types in
object-relational databases. VLDB J., 7(3), 1998.

[12] D. Srivastava. Subsumption and indexing in constraint
query languages with linear arithmetic constraints. Ann.
Math. Artif. Intell., 8(3-4), 1993.

[13] R. H. Wolniewicz and G. Graefe. Algebraic optimization of
computations over scientific databases. In VLDB, 1993.

[14] Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. In SIGMOD, 2003.

