

“One Size Fits All”: An Idea Whose Time Has Come and Gone

Michael Stonebraker
Computer Science and Artificial

Intelligence Laboratory, M.I.T., and
StreamBase Systems, Inc.

stonebraker@csail.mit.edu

Uğur Çetintemel
Department of Computer Science

Brown University, and
StreamBase Systems, Inc.

ugur@cs.brown.edu

Abstract

The last 25 years of commercial DBMS development
can be summed up in a single phrase: “One size fits all”.
This phrase refers to the fact that the traditional DBMS
architecture (originally designed and optimized for
business data processing) has been used to support many
data-centric applications with widely varying
characteristics and requirements.

In this paper, we argue that this concept is no longer
applicable to the database market, and that the
commercial world will fracture into a collection of
independent database engines, some of which may be
unified by a common front-end parser. We use examples
from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly
discuss other markets for which the traditional
architecture is a poor fit and argue for a critical
rethinking of the current factoring of systems services
into products.

1. Introduction
Relational DBMSs arrived on the scene as research

prototypes in the 1970’s, in the form of System R [10]
and INGRES [27]. The main thrust of both prototypes
was to surpass IMS in value to customers on the
applications that IMS was used for, namely “business
data processing”. Hence, both systems were architected
for on-line transaction processing (OLTP) applications,
and their commercial counterparts (i.e., DB2 and
INGRES, respectively) found acceptance in this arena in
the 1980’s. Other vendors (e.g., Sybase, Oracle, and
Informix) followed the same basic DBMS model, which
stores relational tables row-by-row, uses B-trees for
indexing, uses a cost-based optimizer, and provides
ACID transaction properties.

Since the early 1980’s, the major DBMS vendors have
steadfastly stuck to a “one size fits all” strategy, whereby
they maintain a single code line with all DBMS services.
The reasons for this choice are straightforward ― the use

of multiple code lines causes various practical problems,
including:

• a cost problem, because maintenance costs increase

at least linearly with the number of code lines;
• a compatibility problem, because all applications

have to run against every code line;
• a sales problem, because salespeople get confused

about which product to try to sell to a customer; and
• a marketing problem, because multiple code lines

need to be positioned correctly in the marketplace.

To avoid these problems, all the major DBMS vendors
have followed the adage “put all wood behind one
arrowhead”. In this paper we argue that this strategy has
failed already, and will fail more dramatically off into the
future.

The rest of the paper is structured as follows. In
Section 2, we briefly indicate why the single code-line
strategy has failed already by citing some of the key
characteristics of the data warehouse market. In Section
3, we discuss stream processing applications and indicate
a particular example where a specialized stream
processing engine outperforms an RDBMS by two orders
of magnitude. Section 4 then turns to the reasons for the
performance difference, and indicates that DBMS
technology is not likely to be able to adapt to be
competitive in this market. Hence, we expect stream
processing engines to thrive in the marketplace. In
Section 5, we discuss a collection of other markets where
one size is not likely to fit all, and other specialized
database systems may be feasible. Hence, the
fragmentation of the DBMS market may be fairly
extensive. In Section 6, we offer some comments about
the factoring of system software into products. Finally,
we close the paper with some concluding remarks in
Section 7.

2. Data warehousing
In the early 1990’s, a new trend appeared: Enterprises

wanted to gather together data from multiple operational
databases into a data warehouse for business intelligence

purposes. A typical large enterprise has 50 or so
operational systems, each with an on-line user community
who expect fast response time. System administrators
were (and still are) reluctant to allow business-
intelligence users onto the same systems, fearing that the
complex ad-hoc queries from these users will degrade
response time for the on-line community. In addition,
business-intelligence users often want to see historical
trends, as well as correlate data from multiple operational
databases. These features are very different from those
required by on-line users.

For these reasons, essentially every enterprise created a
large data warehouse, and periodically “scraped” the data
from operational systems into it. Business-intelligence
users could then run their complex ad-hoc queries against
the data in the warehouse, without affecting the on-line
users. Although most warehouse projects were
dramatically over budget and ended up delivering only a
subset of promised functionality, they still delivered a
reasonable return on investment. In fact, it is widely
acknowledged that historical warehouses of retail
transactions pay for themselves within a year, primarily
as a result of more informed stock rotation and buying
decisions. For example, a business-intelligence user can
discover that pet rocks are out and Barbie dolls are in, and
then make appropriate merchandise placement and
buying decisions.

Data warehouses are very different from OLTP
systems. OLTP systems have been optimized for updates,
as the main business activity is typically to sell a good or
service. In contrast, the main activity in data warehouses
is ad-hoc queries, which are often quite complex. Hence,
periodic load of new data interspersed with ad-hoc query
activity is what a typical warehouse experiences.

The standard wisdom in data warehouse schemas is to
create a fact table, containing the “who, what, when,
where” about each operational transaction. For example,
Figure 1 shows the schema for a typical retailer. Note the
central fact table, which holds an entry for each item that
is scanned by a cashier in each store in its chain. In
addition, the warehouse contains dimension tables, with
information on each store, each customer, each product,

and each time period. In effect, the fact table contains a
foreign key for each of these dimensions, and a star
schema is the natural result. Such star schemas are omni-
present in warehouse environments, but are virtually non-
existent in OLTP environments.

It is a well known homily that warehouse applications
run much better using bit-map indexes while OLTP users
prefer B-tree indexes. The reasons are straightforward:
bit-map indexes are faster and more compact on
warehouse workloads, while failing to work well in
OLTP environments. As a result, many vendors support
both B-tree indexes and bit-map indexes in their DBMS
products.

In addition, materialized views are a useful
optimization tactic in warehouse worlds, but never in
OLTP worlds. In contrast, normal (“virtual”) views find
acceptance in OLTP environments.

To a first approximation, most vendors have a
warehouse DBMS (bit-map indexes, materialized views,
star schemas and optimizer tactics for star schema
queries) and an OLTP DBMS (B-tree indexes and a
standard cost-based optimizer), which are united by a
common parser, as illustrated in Figure 2.

Although this configuration allows such a vendor to
market his DBMS product as a single system, because of
the single user interface, in effect, she is selling multiple
systems. Moreover, there will considerable pressure from
both the OLTP and warehouse markets for features that
are of no use in the other world. For example, it is
common practice in OLTP databases to represent the state
(in the United States) portion of an address as a two-byte
character string. In contrast, it is obvious that 50 states
can be coded into six bits. If there are enough queries and
enough data to justify the cost of coding the state field,
then the later representation is advantageous. This is
usually true in warehouses and never true in OLTP.
Hence, elaborate coding of fields will be a warehouse
feature that has little or no utility in OLTP. The inclusion
of additional market-specific features will make
commercial products look increasingly like the
architecture illustrated in Figure 2.

The illusion of “one size fits all” can be preserved as a
marketing fiction for the two different systems of Figure

Store_key
Product_key
Time_key
Customer_key

Cost
Quantity
Discount
…

Store_key
Product_key
Time_key
Customer_key

Cost
Quantity
Discount
…Customer_key

Name
Address
Status

Customer_key
Name
Address
Status

Product_key
Name
Description

Product_key
Name
Description

Store_key
City
State
Region

Store_key
City
State
Region

Time_key
Day
Month
Year

Time_key
Day
Month
YearSALES (Fact Table)

STORE (DimensionTable) TIME (DimensionTable)

Figure 1: A typical star schema

Common
Top Parser
Common
Top Parser

OLTP
Bottom
OLTP
Bottom

Warehouse
Bottom

Warehouse
Bottom

Figure 2: The architecture of current DBMSs

2, because of the common user interface. In the stream
processing market, to which we now turn, such a
common front end is impractical. Hence, not only will
there be different engines but also different front ends.
The marketing fiction of “one size fits all” will not fly in
this world.

3. Stream processing
Recently, there has been considerable interest in the

research community in stream processing applications [7,
13, 14, 20]. This interest is motivated by the upcoming
commercial viability of sensor networks over the next
few years. Although RFID has gotten all the press
recently and will find widespread acceptance in retail
applications dealing with supply chain optimization, there
are many other technologies as well (e.g., Lojack [3]).
Many industry pundits see a “green field” of monitoring
applications that will be enabled by this “sea change”
caused by networks of low-cost sensor devices.

3.1 Emerging sensor-based applications
There are obvious applications of sensor network

technology in the military domain. For example, the US
Army is investigating putting vital-signs monitors on all
soldiers, so that they can optimize medical triage in
combat situations. In addition, there is already a GPS
system in many military vehicles, but it is not connected
yet into a closed-loop system. Instead, the army would
like to monitor the position of all vehicles and determine,
in real time, if they are off course. Additionally, they
would like a sensor on the gun turret; together with
location, this will allow the detection of crossfire
situations. A sensor on the gas gauge will allow the
optimization of refueling. In all, an army battalion of
30,000 humans and 12,000 vehicles will soon be a large-
scale sensor network of several hundred thousand nodes
delivering state and position information in real time.

Processing nodes in the network and downstream
servers must be capable of dealing with this “firehose” of

data. Required operations include sophisticated alerting,
such as the platoon commander wishes to know when
three of his four vehicles cross the front line. Also
required are historical queries, such as “Where has
vehicle 12 been for the last two hours?” Lastly,
requirements encompass longitudinal queries, such as
“What is the overall state of readiness of the force right
now?”

Other sensor-based monitoring applications will also
come over time in many non-military applications.
Monitoring traffic congestion and suggesting alternate
travel routes is one example. A related application is
variable, congestion-based tolling on highway systems,
which was the inspiration behind the Linear Road
benchmark [9]. Amusement parks will soon turn passive
wristbands on customers into active sensors, so that rides
can be optimized and lost children located. Cell phones
are already active devices, and one can easily imagine a
service whereby the closest restaurant to a hungry
customer can be located. Even library books will be
sensor tagged, because if one is mis-shelved, it may be
lost forever in a big library.

There is widespread speculation that conventional
DBMSs will not perform well on this new class of
monitoring applications. In fact, on Linear Road,
traditional solutions are nearly an order of magnitude
slower than a special purpose stream processing engine
[9]. The inapplicability of the traditional DBMS
technology to streaming applications is also bolstered by
an examination of the current application areas with
streaming data. We now discuss our experience with such
an application, financial-feed processing.

3.2 An existing application:
financial-feed processing

Most large financial institutions subscribe to feeds that
deliver real-time data on market activity, specifically
news, consummated trades, bids and asks, etc. Reuters,
Bloomberg and Infodyne are examples of vendors that

Alarm
Delay=5 sec

Alarm
Delay=60 sec

Union Count 100

500 fast
securities

4000 slow
securities

Feed A
Problem in Feed A

Case
provider

Union Count 100

Problem in Provider 1

Union Count 100Case
provider

Provider 1

Provider 1

Provider 2

Provider 2

Alarm
Delay=5 sec

Alarm
Delay=60 sec

Union Count 100

500 fast
securities

4000 slow
securities

Feed B

Case
alarm type Problem in Security In Feed A

Problem in Feed B
Case

alarm type Problem in Security in Feed B

Map

Case
alarm type

Problem in Provider 2

Case
alarm type

Filter
alarm=true

Filter
alarm=true

Filter
alarm=true

Filter
alarm=true

Map

Figure 3: The Feed Alarm application in StreamBase

deliver such feeds. Financial institutions have a variety of
applications that process such feeds. These include
systems that produce real-time business analytics, ones
that perform electronic trading, ones that ensure legal
compliance of all trades to the various company and SEC
rules, and ones that compute real-time risk and market
exposure to fluctuations in foreign exchange rates. The
technology used to implement this class of applications is
invariably “roll your own”, because application experts
have not had good luck with off-the-shelf system
software products.

In order to explore feed processing issues more deeply,
we now describe in detail a specific prototype
application, which was specified by a large mutual fund
company. This company subscribes to several
commercial feeds, and has a current production
application that watches all feeds for the presence of late
data. The idea is to alert the traders if one of the
commercial feeds is delayed, so that the traders can know
not to trust the information provided by that feed. This
company is unhappy with the performance and flexibility
of their “roll your own” solution and requested a pilot
using a stream processing engine.

The company engineers specified a simplified version
of their current application to explore the performance
differences between their current system and a stream
processing engine. According to their specification, they
were looking for maximum message processing
throughput on a single PC-class machine for a subset of
their application, which consisted of two feeds reporting
data from two exchanges.

Specifically, there are 4500 securities, 500 of which
are “fast moving”. A stock tick on one of these securities
is late if it occurs more than five seconds after the
previous tick from the same security. The other 4000
symbols are slow moving, and a tick is late if 60 seconds
have elapsed since the previous tick.

There are two feed providers and the company wished
to receive an alert message each time there is a late tick
from either provider. In addition, they wished to maintain
a counter for each provider. When 100 late ticks have
been received from either provider, they wished to
receive a special “this is really bad” message and then to
suppress the subsequent individual tick reports

The last wrinkle in the company’s specification was
that they wished to accumulate late ticks from each of
two exchanges, say NYSE and NASD, regardless of
which feed vendor produced the late data. If 100 late
messages were received from either exchange through
either feed vendor, they wished to receive two additional
special messages. In summary, they want four counters,
each counting to 100, with a resulting special message.
An abstract representation of the query diagram for this
task is shown in Figure 3.

Although this prototype application is only a subset of
the application logic used in the real production system, it
represents a simple-to-specify task on which performance
can be readily measured; as such, it is a representative

example. We now turn to the speed of this example
application on a stream processing engine as well as an
RDBMS.

4. Performance discussion
The example application discussed in the previous

section was implemented in the StreamBase stream
processing engine (SPE) [5], which is basically a
commercial, industrial-strength version of Aurora [8, 13].
On a 2.8Ghz Pentium processor with 512 Mbytes of
memory and a single SCSI disk, the workflow in Figure 3
can be executed at 160,000 messages per second, before
CPU saturation is observed. In contrast, StreamBase
engineers could only coax 900 messages per second from
an implementation of the same application using a
popular commercial relational DBMS.

In this section, we discuss the main reasons that result
in the two orders of magnitude difference in observed
performance. As we argue below, the reasons have to do
with the inbound processing model, correct primitives for
stream processing, and seamless integration of DBMS
processing with application processing. In addition, we
also consider transactional behavior, which is often
another major consideration.

4.1 “Inbound” versus “outbound” processing
Built fundamentally into the DBMS model of the

world is what we term “outbound” processing, illustrated
in Figure 4. Specifically, one inserts data into a database
as a first step (step 1). After indexing the data and
committing the transaction, that data is available for
subsequent query processing (step 2) after which results
are presented to the user (step 3). This model of “process-
after-store” is at the heart of all conventional DBMSs,
which is hardly surprising because, after all, the main
function of a DBMS is to accept and then never lose data.

In real-time applications, the storage operation, which
must occur before processing, adds significantly both to
the delay (i.e., latency) in the application, as well as to the
processing cost per message of the application. An
alternative processing model that avoids this storage
bottleneck is shown graphically in Figure 5. Here, input
streams are pushed to the system (step 1) and get
processed (step 2) as they “fly by” in memory by the
query network. The results are then pushed to the client
application(s) for consumption (step 3). Reads or writes
to storage are optional and can be executed
asynchronously in many cases, when they are present.
The fact that storage is absent or optional saves both on
cost and latency, resulting in significantly higher
performance. This model, called “inbound” processing, is
what is employed by a stream processing engine such as
StreamBase.

One is, of course, led to ask “Can a DBMS do inbound
processing?” DBMSs were originally designed as
outbound processing engines, but grafted triggers onto
their engines as an afterthought many years later. There
are many restrictions on triggers (e.g., the number

allowed per table) and no way to ensure trigger safety
(i.e., ensuring that triggers do not go into an infinite
loop). Overall, there is very little or no programming
support for triggers. For example, there is no way to see
what triggers are in place in an application, and no way to
add a trigger to a table through a graphical user interface.
Moreover, virtual views and materialized views are
provided for regular tables, but not for triggers. Lastly,
triggers often have performance problems in existing
engines. When StreamBase engineers tried to use them
for the feed alarm application, they still could not obtain
more than 900 messages per second. In summary, triggers
are incorporated to the existing designs as an afterthought
and are thus second-class citizens in current systems.

As such, relational DBMSs are outbound engines onto
which limited inbound processing has been grafted. In
contrast, stream processing engines, such as Aurora and
StreamBase are fundamentally inbound processing
engines. From the ground up, an inbound engine looks
radically different from an outbound engine. For
example, an outbound engine uses a “pull” model of
processing, i.e., a query is submitted and it is the job of
the engine to efficiently pull records out of storage to
satisfy the query. In contrast, an inbound engine uses a
“push” model of processing, and it is the job of the engine
to efficiently push incoming messages through the
processing steps entailed in the application.

Another way to view the distinction is that an
outbound engine stores the data and then executes the
queries against the data. In contrast, an inbound engine
stores the queries and then passes the incoming data
(messages) through the queries.

Although it seems conceivable to construct an engine
that is either an inbound or an outbound engine, such a
design is clearly a research project. In the meantime,
DBMSs are optimized for outbound processing, and
stream processing engines for inbound processing. In the
feed alarm application, this difference in philosophy
accounts for a substantial portion of the performance
difference observed.

4.2 The correct primitives
SQL systems contain a sophisticated aggregation

system, whereby a user can run a statistical computation
over groupings of the records from a table in a database.
The standard example is:

Select avg (salary)
From employee
Group by department

When the execution engine processes the last record in

the table, it can emit the aggregate calculation for each
group of records. However, this construct is of little
benefit in streaming applications, where streams continue
forever and there is no notion of “end of table”.

Consequently, stream processing engines extend SQL
(or some other aggregation language) with the notion of
time windows. In StreamBase, windows can be defined
based on clock time, number of messages, or breakpoints
in some other attribute. In the feed alarm application, the
leftmost box in each stream is such an aggregate box.
The aggregate groups stocks by symbol and then defines
windows to be ticks 1 and 2, 2 and 3, 3 and 4, etc. for
each stock. Such “sliding windows” are often very useful
in real-time applications.

In addition, StreamBase aggregates have been
constructed to deal intelligently with messages which are
late, out-of-order, or missing. In the feed alarm
application, the customer is fundamentally interested in
looking for late data. StreamBase allows aggregates on
windows to have two additional parameters. The first is a
timeout parameter, which instructs the StreamBase
execution engine to close a window and emit a value even
if the condition for closing the window has not been
satisfied. This parameter effectively deals with late or
missing tuples. The second parameter is slack, which is a
directive to the execution engine to keep a window open,
after its closing condition has been satisfied. This
parameter addresses disorder in tuple arrivals. These two
parameters allow the user to specify how to deal with

updates

pull processing

storage

1

results

2

3

Figure 4: “Outbound” processing

input
streams
1

push
processing

2
results

optional
archive
access

optional
storage

storage

3

Figure 5: “Inbound” processing

stream abnormalities and can be effectively utilized to
improve system resilience.

In the feed alarm application each window is two ticks,
but has a timeout of either 5 or 60 seconds. This will
cause windows to be closed if the inter-arrival time
between successive ticks exceeds the maximum defined
by the user. This is a very efficient way to discover late
data; i.e., as a side effect of the highly-tuned aggregate
logic. In the example application, the box after each
aggregate discards the valid data and keeps only the
timeout messages. The remainder of the application
performs the necessary bookkeeping on these timeouts.

Having the right primitives at the lower layers of the
system enables very high performance. In contrast, a
relational engine contains no such built-in constructs.
Simulating their effect with conventional SQL is quite
tedious, and results in a second significant difference in
performance.

It is possible to add time windows to SQL, but these
make no sense on stored data. Hence, window constructs
would have to be integrated into some sort of an inbound
processing model.

4.3 Seamless integration of DBMS processing and
application logic

Relational DBMSs were all designed to have client-
server architectures. In this model, there are many client
applications, which can be written by arbitrary people,
and which are therefore typically untrusted. Hence, for
security and reliability reasons, these client applications
are run in a separate address space from the DBMS. The
cost of this choice is that the application runs in one
address space while DBMS processing occurs in another,
and a process switch is required to move from one
address space to the other.

In contrast, the feed alarm application is an example of
an embedded system. It is written by one person or group,
who is trusted to “do the right thing”. The entire
application consists of (1) DBMS processingfor
example the aggregation and filter boxes, (2) control
logic to direct messages to the correct next processing
step, and (3) application logic. In StreamBase, these three
kinds of functionality can be freely interspersed.
Application logic is supported with user-defined boxes,
the Count100 box in our example financial-feed
processing application. The actual code, shown in Figure

6, consists of four lines of C++ that counts to 100 and sets
a flag that ensures that the correct messages are emitted.
Control logic is supported by allowing multiple
predicates in a filter box, and thereby multiple exit arcs.
As such, a filter box performs “if-then-else” logic in
addition to filtering streams.

In effect, the feed alarm application is a mix of DBMS-
style processing, conditional expressions, and user-
defined functions in a conventional programming
language. This combination is performed by StreamBase
within a single address space without any process
switches. Such a seamless integration of DBMS logic
with conventional programming facilities was proposed
many years ago in Rigel [23] and Pascal-R [25], but was
never implemented in commercial relational systems.
Instead, the major vendors implemented stored
procedures, which are much more limited programming
systems. More recently, the emergence of object-
relational engines provided blades or extenders, which are
more powerful than stored procedures, but still do not
facilitate flexible control logic.

Embedded systems do not need the protection provided
by client-server DBMSs, and a two-tier architecture
merely generates overhead. This is a third source of the
performance difference observed in our example
application.

Another integration issue, not exemplified by the feed
alarm example, is the storage of state information in
streaming applications. Most stream processing
applications require saving some state, anywhere from
modest numbers of megabytes to small numbers of
gigabytes. Such state information may include (1)
reference data (i.e., what stocks are of interest), (2)
translation tables (in case feeds use different symbols for
the same stock), and (3) historical data (e.g., “how many
late ticks were observed every day during the last year?”).
As such, tabular storage of data is a requirement for most
stream processing applications.

StreamBase embeds BerkeleyDB [4] for state storage.
However, there is approximately one order of magnitude
performance difference between calling BerkeleyDB in
the StreamBase address space and calling it in client-
server mode in a different address space. This is yet
another reason to avoid process switches by mixing
DBMS and application processing in one address space.

Count 100 same as

Map
F.evaluate:

cnt++
if (cnt % 100 != 0) if !suppress emit lo-alarm

else emit drop-alarm
else emit hi-alarm, set suppress = true

Figure 6: “Count100” logic

Although one might suggest that DBMSs enhance their
programming models to address this performance
problem, there are very good reasons why client-server
DBMSs were designed the way they are. Most business
data processing applications need the protection that is
afforded by this model. Stored procedures and object-
relational blades were an attempt to move some of the
client logic into the server to gain performance. To move
further, a DBMS would have to implement both an
embedded and a non-embedded model, with different run
time systems. Again, this would amount to giving up on
“one size fits all”.

In contrast, feed processing systems are invariably
embedded applications. Hence, the application and the
DBMS are written by the same people, and driven from
external feeds, not from human-entered transactions. As
such, there is no reason to protect the DBMS from the
application, and it is perfectly acceptable to run both in
the same address space. In an embedded processing
model, it is reasonable to freely mix application logic,
control logic and DBMS logic, which is exactly what
StreamBase does.

4.4 High availability
It is a requirement of many stream-based applications

to have high availability (HA) and stay up 7x24. Standard
DBMS logging and crash recovery mechanisms (e.g.,
[22]) are ill-suited for the streaming world as they
introduce several key problems.

First, log-based recovery may take large number of
seconds to small numbers of minutes. During this period,
the application would be “down”. Such behavior is
clearly undesirable in many real-time streaming domains
(e.g., financial services). Second, in case of a crash, some
effort must be made to buffer the incoming data streams,
as otherwise this data will be irretrievably lost during the
recovery process. Third, DBMS recovery will only deal
with tabular state and will thus ignore operator states. For
example, in the feed alarm application, the counters are
not in stored in tables; therefore their state would be lost
in a crash. One straightforward fix would be to force all
operator state into tables to use DBMS-style recovery;
however, this solution would significantly slow down the
application.

The obvious alternative to achieve high availability is
to use techniques that rely on Tandem-style process pairs
[11]. The basic idea is that, in the case of a crash, the
application performs failover to a backup machine, which
typically operates as a “hot standby”, and keeps going
with small delay. This approach eliminates the overhead
of logging. As a case in point, StreamBase turns off
logging in BerkeleyDB.

Unlike traditional data-processing applications that
require precise recovery for correctness, many stream-
processing applications can tolerate and benefit from
weaker notions of recovery. In other words, failover does
not always need to be “perfect”. Consider monitoring
applications that operate on data streams whose values

are periodically refreshed. Such applications can often
tolerate tuple losses when a failure occurs, as long as such
interruptions are short. Similarly, if one loses a couple of
ticks in the feed alarm application during failover, the
correctness would probably still be preserved. In contrast,
applications that trigger alerts when certain combinations
of events happen, require that no tuples be lost, but may
tolerate temporary duplication. For example, a patient
monitoring application may be able to tolerate duplicate
tuples (``heart rate is 79'') but not lost tuples (``heart rate
has changed to zero''). Of course, there will always be a
class of applications that require strong, precise recovery
guarantees. A financial application that performs
portfolio management based on individual stock
transactions falls into this category.

As a result, there is an opportunity to devise simplified
and low overhead failover schemes, when weaker
correctness notions are sufficient. A collection of detailed
options on how to achieve high availability in a streaming
world has recently been explored [17].

4.5 Synchronization
Many stream-based applications rely on shared data

and computation. Shared data is typically contained in a
table that one query updates and another one reads. For
example, the Linear Road application requires that
vehicle-position data be used to update statistics on
highway usage, which in turn are read to determine tolls
for each segment on the highway. Thus, there is a basic
need to provide isolation between messages.

Traditional DBMSs use ACID transactions to provide
isolation (among others things) between concurrent
transactions submitted by multiple users. In streaming
systems, which are not multi-user, such isolation can be
effectively achieved through simple critical sections,
which can be implemented through light-weight
semaphores. Since full-fledged transactions are not
required, there is no need to use heavy-weight locking-
based mechanisms anymore.

In summary, ACID properties are not required in most
stream processing applications, and simpler, specialized
performance constructs can be used to advantage.

5. One size fits all?
The previous section has indicated a collection of

architectural issues that result in significant differences in
performance between specialized stream processing
engines and traditional DBMSs. These design choices
result in a big difference between the internals of the two
engines. In fact, the run-time code in StreamBase looks
nothing like a traditional DBMS run-time. The net result
is vastly better performance on a class of real-time
applications. These considerations will lead to a separate
code line for stream processing, of course assuming that
the market is large enough to facilitate this scenario.

In the rest of the section, we outline several other
markets for which specialized database engines may be
viable.

5.1 Data warehouses
The architectural differences between OLTP and

warehouse database systems discussed in Section 2 are
just the tip of the iceberg, and additional differences will
occur over time. We now focus on probably the biggest
architectural difference, which is to store the data by
column, rather than by row.

All major DBMS vendors implement record-oriented
storage systems, where the attributes of a record are
placed contiguously in storage. Using this “row-store”
architecture, a single disk write is all that is required to
push all of the attributes of a single record out to disk.
Hence, such a system is “write-optimized” because high
performance on record writes is easily achievable. It is
easy to see that write-optimized systems are especially
effective on OLTP-style applications, the primary reason
why most commercial DBMSs employ this architecture.

In contrast, warehouse systems need to be “read-
optimized” as most workload consists of ad-hoc queries
that touch large amounts of historical data. In such
systems, a “column-store” model where the values for all
of the rows of a single attribute are stored contiguously is
drastically more efficient (as demonstrated by Sybase IQ
[6], Addamark [1], and KDB [2]).

With a column-store architecture, a DBMS need only
read the attributes required for processing a given query,
and can avoid bringing into memory any other irrelevant
attributes. Given that records with hundreds of attributes
(with many null values) are becoming increasingly
common, this approach results in a sizeable performance
advantage for warehouse workloads where typical queries
involve aggregates that are computed on a small number
of attributes over large data sets. The first author of this
paper is engaged in a research project to explore the
performance benefits of a column-store system.

5.2 Sensor networks
It is not practical to run a traditional DBMS in the

processing nodes that manage sensors in a sensor network
[21, 24]. These emerging platforms of device networks
are currently being explored for applications such as
environmental and medical monitoring, industrial
automation, autonomous robotic teams, and smart homes
[16, 19, 26, 28, 29].

In order to realize the full potential of these systems,
the components are designed to be wireless, with respect
to both communication and energy. In this environment,
bandwidth and power become the key resources to be
conserved. Furthermore, communication, as opposed to
processing or storage access, is the main consumer of
energy. Thus, standard DBMS optimization tactics do not
apply and need to be critically rethought. Furthermore,
transactional capabilities seem to be irrelevant in this
domain.

In general, there is a need to design flexible, light-
weight database abstractions (such as TinyDB [18]) that
are optimized for data movement as opposed to data
storage.

5.3 Text search
None of the current text search engines use DBMS

technology for storage, even though they deal with
massive, ever-increasing data sets. For instance, Google
built its own storage system (called GFS [15]) that
outperforms conventional DBMS technology (as well as
file system technology) for some of the reasons discussed
in Section 4.

A typical search engine workload [12, 15] consists of a
combination of inbound streaming data (coming from
web crawlers), which needs to be cleaned and
incorporated into the existing search index, and ad hoc
look-up operations on the existing index. In particular, the
write operations are mostly append-only and read
operations sequential. Concurrent writes (i.e., appends) to
the same file are necessary for good performance. Finally,
the large number of storage machines, made up of
commodity parts, ensure that failure is the norm rather
than the exception. Hence, high availability is a key
design consideration and can only be achieved through
fast recovery and replication.

Clearly, these application characteristics are much
different from those of conventional business-processing
applications. As a result, even though some DBMSs has
built-in text search capabilities, they fall short of meeting
the performance and availability requirements of this
domain: they are simply too heavy-weight and inflexible.

5.4 Scientific databases
Massive amounts of data are continuously being

gathered from the real-world by sensors of various types,
attached to devices such as satellites and microscopes, or
are generated artificially by high-resolution scientific and
engineering simulations.

The analysis of such data sets is the key to better
understanding physical phenomena and is becoming
increasingly commonplace in many scientific research
domains. Efficient analysis and querying of these vast
databases require highly-efficient multi-dimensional
indexing structures and application-specific aggregation
techniques. In addition, the need for efficient data
archiving, staging, lineage, and error propagation
techniques may create a need for yet another specialized
engine in this important domain.

5.5 XML databases
Semi-structured data is everywhere. Unfortunately,

such data does not immediately fit into the relational
model. There is a heated ongoing debate regarding how to
best store and manipulate XML data. Even though some
believe that relational DBMSs (with proper extensions)
are the way to go, others would argue that a specialized
engine is needed to store and process this data format.

6. A Comment on Factoring
Most stream-based applications require three basic

services:

• Message transport: In many stream applications,

there is a need to transport data efficiently and
reliably among multiple distributed machines. The
reasons for these are threefold. First, data sources
and destinations are typically geographically
dispersed. Second, high performance and availability
requirements dictate the use of multiple cooperating
server machines. Third, virtually all big enterprise
systems consist of a complicated network of business
applications running on a large number of machines,
in which an SPE is embedded. Thus, the input and
outputs messages to the SPE need to be properly
routed from and to the appropriate external
applications.

• Storage of state: As discussed in Section 4.3, in all
but the most simplistic applications, there is a need to
store state, typically in the form of read-only
reference and historical tables, and read-write
translation (e.g., hash) tables.

• Execution of application logic: Many streaming
applications demand domain-specific message
processing to be interspersed with query activity. In
general, it is neither possible nor practical to
represent such application logic using only the built-
in query primitives (e.g., think legacy code).

A traditional design for a stream-processing

application spreads the entire application logic across
three diverse systems: (1) a messaging system (such as
MQSeries, WebMethods, or Tibco) to reliably connect
the component systems, typically using a
publish/subscribe paradigm; (2) a DBMS (such as DB2 or
Oracle) to provide persistence for state information; and
(3) an application server (such as WebSphere or
WebLogic) to provide application services to a set of
custom-coded programs. Such a three-tier configuration
is illustrated in Figure 7.

Unfortunately, such a design that spreads required
functionality over three heavyweight pieces of system

software will not perform well. For example, every
message that requires state lookup and application
services will entail multiple process switches between
these different services.

In order to illustrate this per message overhead, we
trace the steps taken when processing a message. An
incoming message is first picked up by the bus and then
forwarded to the custom application code (step 1), which
cleans up and then processes the message. If the message
needs to be correlated with historical data or requires
access to persistent data, then a request is sent to the DB
server (steps 2-3), which accesses the DBMS. The
response follows the reverse path to the application code
(steps 4-5). Finally, the outcome of the processed
message is forwarded to the client task GUI (step 6).
Overall, there are six “boundary crossings” for processing
a single message. In addition to the obvious context
switches incurred, messages also need to transformed on-
the-fly, by the appropriate adapters, to and from the
native formats of the systems, each time they are picked
up from and passed on to the message bus. The result is a
very low useful work to overhead ratio. Even if there is
some batching of messages, the overhead will be high and
limit achievable performance.

To avoid such a performance hit, a stream processing
engine must provide all three services in a single piece of
system software that executes as one multi-threaded
process on each machine that it runs. Hence, an SPE must
have elements of a DBMS, an application server, and a
messaging system. In effect, an SPE should provide
specialized capabilities from all three kinds of software
“under one roof”.

This observation raises the question of whether the
current factoring of system software into components
(e.g., application server, DBMS, Extract-Transform-Load
system, message bus, file system, web server, etc.) is
actually an optimal one. After all, this particular
decomposition arose partly as a historical artifact and
partly from marketing happenstance. It seems like other
factoring of systems services seems equally plausible, and

RDBMSRDBMS

Message BusMessage Bus

Custom
App 1

Custom
App 1

1 2 5 6

3 4

process boundary

boundary crossing

Custom
App 2

Custom
App 2

Custom
App 3

Custom
App 3

Custom
App n

Custom
App n

......

Application ServerApplication Server

DB ServerDB Server

from stream
sources

to client
task GUIs

messages results

Figure 7: A multi-tier stream processing architecture

it should not be surprising to see considerable evolution
of component definition and factoring off into the future.

7. Concluding Remarks
In summary, there may be a substantial number of

domain-specific database engines with differing
capabilities off into the future. We are reminded of the
curse “may you live in interesting times”. We believe
that the DBMS market is entering a period of very
interesting times. There are a variety of existing and
newly-emerging applications that can benefit from data
management and processing principles and techniques. At
the same time, these applications are very much different
from business data processing and from each other ―
there seems to be no obvious way to support them with a
single code line. The “one size fits all” theme is unlikely
to successfully continue under these circumstances.

References
[1] Addamark Scalable Log Server.

http://www.addamark.com/products/sls.htm.
[2] Kx systems. http://www.kx.com/.
[3] Lojack.com, 2004. http://www.lojack.com/.
[4] Sleepycat software. http://www.sleepycat.com/.
[5] StreamBase Inc.

http://www.streambase.com/.
[6] Sybase IQ.

http://www.sybase.com/products/databaseservers/sybaseiq.
[7] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.

Convey, C. Erwin, E. Galvez, M. Hatoun, J. Hwang, A.
Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul,
Y. Zing, R.Yan, and S. Zdonik. Aurora: A Data Stream
Management System (demo description). In Proceedings of
the 2003 ACM SIGMOD Conference on Management of
Data, San Diego, CA, 2003.

[8] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A New Model and Architecture for Data Stream
Management. VLDB Journal, 2003.

[9] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road:
A Benchmark for Stream Data Management Systems. In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), Toronto, CA, 2004.

[10] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A.
Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L.
Traiger, B. Wade, and V. Watson. System R: A Relational
Approach to Database Management. ACM Transactions on
Database Systems, 1976.

[11] J. Barlett, J. Gray, and B. Horst. Fault tolerance in Tandem
computer systems. Tandem Computers Technical Report
86.2., 1986.

[12] E. Brewer, “Combining systems and databases: a search
engine retrospective,” in Readings in Database Systems, M.
Stonebraker and J. Hellerstein, Eds., 4 ed, 2004.

[13] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.
Zdonik. Monitoring Streams: A New Class of Data
Management Applications. In proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB'02), Hong Kong, China, 2002.

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S.
R. Madden, V. Raman, F. Reiss, and M. A. Shah.
TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. In Proc. of the 1st CIDR Conference,
Asilomar, CA, 2003.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP),
Bolton Landing, NY, USA, 2003.

[16] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,
L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. An
Energy-Efficient Surveillance System Using Wireless
Sensor Networks. In MobiSys'04, 2004.

[17] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.
Stonebraker, and S. Zdonik. High-Availability Algorithms
for Distributed Stream Processing. In Proceedings of the
International Conference on Data Engineering, Tokyo,
Japan, 2004.

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
Design of an Acquisitional Query Processor for Sensor
Networks. In Proceedings of SIGMOD, San Diego, CA,
2003.

[19] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton.
CodeBlue: An Ad Hoc Sensor Network Infrastructure for
Emergency Medical Care. In WAMES'04, 2004.

[20] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.
Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query Processing, Resource Management, and
Approximation and in a Data Stream Management System.
In Proc. of the First Biennial Conference on Innovative
Data Systems Research (CIDR 2003), Asilomar, CA, 2003.

[21] G. Pottie and W. Kaiser. Wireless Integrated Network
Sensors. Communications of the ACM.

[22] K. Rothermel and C. Mohan. ARIES/NT: A Recovery
Method Based on Write-Ahead Logging for Nested
Transactions. In Proc. 15th International Conference on
Very Large Data Bases (VLDB), Amsterdam, Holland,
1989.

[23] L. A. Rowe and K. A. Shoens. Data abstraction, views and
updates in RIGEL. In Proceedings of the 1979 ACM
SIGMOD international conference on Management of data
(SIGMOD), Boston, Massachusetts, 1979.

[24] P. Saffo. Sensors: The Next Wave of Information.
Communications of the ACM.

[25] J. W. Schmidth. Some High-Level Language Constructs for
Data of Type Relation. Transactions on Database Systems,
2(247-261, 1977.

[26] L. Schwiebert, S. Gupta, and J. Weinmann. Research
Challenges in Wireless Networks of Biomedical Sensors.
In Mobicom'01, 2001.

[27] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The
Design and Implementation of INGRES. ACM Trans.
Database Systems, 1(3):189-222, 1976.

[28] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.
Lessons from a Sensor Network Expedition. In EWSN'04,
2004.

[29] C. S. Ting Liu, Pei Zhang and Margaret Martonosi.
Implementing Software on Resource-Constrained Mobile
Sensors: Experiences with Impala and ZebraNet. In
MobiSys'04, 2004.

