
 

“One Size Fits All”: An Idea Whose Time Has Come and Gone 
 
 

Michael Stonebraker 
Computer Science and Artificial 

Intelligence Laboratory, M.I.T., and 
StreamBase Systems, Inc. 

stonebraker@csail.mit.edu 
 

Uğur Çetintemel 
Department of Computer Science 

Brown University, and 
StreamBase Systems, Inc. 

ugur@cs.brown.edu 
 

 
 

 
 

Abstract 
 

The last 25 years of commercial DBMS development 
can be summed up in a single phrase: “One size fits all”. 
This phrase refers to the fact that the traditional DBMS 
architecture (originally designed and optimized for 
business data processing) has been used to support many 
data-centric applications with widely varying 
characteristics and requirements.  

In this paper, we argue that this concept is no longer 
applicable to the database market, and that the 
commercial world will fracture into a collection of 
independent database engines, some of which may be 
unified by a common front-end parser. We use examples 
from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly 
discuss other markets for which the traditional 
architecture is a poor fit and argue for a critical 
rethinking of the current factoring of systems services 
into products.  
 

1. Introduction 
Relational DBMSs arrived on the scene as research 

prototypes in the 1970’s, in the form of System R [10] 
and INGRES [27]. The main thrust of both prototypes 
was to surpass IMS in value to customers on the 
applications that IMS was used for, namely “business 
data processing”. Hence, both systems were architected 
for on-line transaction processing (OLTP) applications, 
and their commercial counterparts (i.e., DB2 and 
INGRES, respectively) found acceptance in this arena in 
the 1980’s. Other vendors (e.g., Sybase, Oracle, and 
Informix) followed the same basic DBMS model, which 
stores relational tables row-by-row, uses B-trees for 
indexing, uses a cost-based optimizer, and provides 
ACID transaction properties.   

Since the early 1980’s, the major DBMS vendors have 
steadfastly stuck to a “one size fits all” strategy, whereby 
they maintain a single code line with all DBMS services. 
The reasons for this choice are straightforward ― the use 

of multiple code lines causes various practical problems, 
including: 

 
• a cost problem, because maintenance costs increase 

at least linearly with the number of code lines; 
• a compatibility problem, because all applications 

have to run against every code line; 
• a sales problem, because salespeople get confused 

about which product to try to sell to a customer; and  
• a marketing problem, because multiple code lines 

need to be positioned correctly in the marketplace. 
 

To avoid these problems, all the major DBMS vendors 
have followed the adage “put all wood behind one 
arrowhead”. In this paper we argue that this strategy has 
failed already, and will fail more dramatically off into the 
future.  

The rest of the paper is structured as follows. In 
Section 2, we briefly indicate why the single code-line 
strategy has failed already by citing some of the key 
characteristics of the data warehouse market. In Section 
3, we discuss stream processing applications and indicate 
a particular example where a specialized stream 
processing engine outperforms an RDBMS by two orders 
of magnitude. Section 4 then turns to the reasons for the 
performance difference, and indicates that DBMS 
technology is not likely to be able to adapt to be 
competitive in this market. Hence, we expect stream 
processing engines to thrive in the marketplace. In 
Section 5, we discuss a collection of other markets where 
one size is not likely to fit all, and other specialized 
database systems may be feasible. Hence, the 
fragmentation of the DBMS market may be fairly 
extensive.  In Section 6, we offer some comments about 
the factoring of system software into products. Finally, 
we close the paper with some concluding remarks in 
Section 7. 

2. Data warehousing 
In the early 1990’s, a new trend appeared: Enterprises 

wanted to gather together data from multiple operational 
databases into a data warehouse for business intelligence 



 

purposes. A typical large enterprise has 50 or so 
operational systems, each with an on-line user community 
who expect fast response time. System administrators 
were (and still are) reluctant to allow business-
intelligence users onto the same systems, fearing that the 
complex ad-hoc queries from these users will degrade 
response time for the on-line community. In addition, 
business-intelligence users often want to see historical 
trends, as well as correlate data from multiple operational 
databases. These features are very different from those 
required by on-line users.  

For these reasons, essentially every enterprise created a 
large data warehouse, and periodically “scraped” the data 
from operational systems into it. Business-intelligence 
users could then run their complex ad-hoc queries against 
the data in the warehouse, without affecting the on-line 
users. Although most warehouse projects were 
dramatically over budget and ended up delivering only a 
subset of promised functionality, they still delivered a 
reasonable return on investment. In fact, it is widely 
acknowledged that historical warehouses of retail 
transactions pay for themselves within a year, primarily 
as a result of more informed stock rotation and buying 
decisions. For example, a business-intelligence user can 
discover that pet rocks are out and Barbie dolls are in, and 
then make appropriate merchandise placement and 
buying decisions.   

Data warehouses are very different from OLTP 
systems. OLTP systems have been optimized for updates, 
as the main business activity is typically to sell a good or 
service. In contrast, the main activity in data warehouses 
is ad-hoc queries, which are often quite complex. Hence, 
periodic load of new data interspersed with ad-hoc query 
activity is what a typical warehouse experiences. 

The standard wisdom in data warehouse schemas is to 
create a fact table, containing the “who, what, when, 
where” about each operational transaction. For example, 
Figure 1 shows the schema for a typical retailer. Note the 
central fact table, which holds an entry for each item that 
is scanned by a cashier in each store in its chain.  In 
addition, the warehouse contains dimension tables, with 
information on each store, each customer, each product, 

and each time period. In effect, the fact table contains a 
foreign key for each of these dimensions, and a star 
schema is the natural result.  Such star schemas are omni-
present in warehouse environments, but are virtually non-
existent in OLTP environments. 

It is a well known homily that warehouse applications 
run much better using bit-map indexes while OLTP users 
prefer B-tree indexes.  The reasons are straightforward: 
bit-map indexes are faster and more compact on 
warehouse workloads, while failing to work well in 
OLTP environments. As a result, many vendors support 
both B-tree indexes and bit-map indexes in their DBMS 
products.   

In addition, materialized views are a useful 
optimization tactic in warehouse worlds, but never in 
OLTP worlds. In contrast, normal (“virtual”) views find 
acceptance in OLTP environments. 

To a first approximation, most vendors have a 
warehouse DBMS (bit-map indexes, materialized views, 
star schemas and optimizer tactics for star schema 
queries) and an OLTP DBMS (B-tree indexes and a 
standard cost-based optimizer), which are united by a 
common parser, as illustrated in Figure 2. 

Although this configuration allows such a vendor to 
market his DBMS product as a single system, because of 
the single user interface, in effect, she is selling multiple 
systems. Moreover, there will considerable pressure from 
both the OLTP and warehouse markets for features that 
are of no use in the other world. For example, it is 
common practice in OLTP databases to represent the state 
(in the United States) portion of an address as a two-byte 
character string. In contrast, it is obvious that 50 states 
can be coded into six bits. If there are enough queries and 
enough data to justify the cost of coding the state field, 
then the later representation is advantageous. This is 
usually true in warehouses and never true in OLTP. 
Hence, elaborate coding of fields will be a warehouse 
feature that has little or no utility in OLTP. The inclusion 
of additional market-specific features will make 
commercial products look increasingly like the 
architecture illustrated in Figure 2. 

The illusion of “one size fits all” can be preserved as a 
marketing fiction for the two different systems of Figure 
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Figure 1: A typical star schema 
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Figure 2: The architecture of current DBMSs 



 

2, because of the common user interface.  In the stream 
processing market, to which we now turn, such a 
common front end is impractical. Hence, not only will 
there be different engines but also different front ends. 
The marketing fiction of “one size fits all” will not fly in 
this world. 

3. Stream processing 
Recently, there has been considerable interest in the 

research community in stream processing applications [7, 
13, 14, 20]. This interest is motivated by the upcoming 
commercial viability of sensor networks over the next 
few years. Although RFID has gotten all the press 
recently and will find widespread acceptance in retail 
applications dealing with supply chain optimization, there 
are many other technologies as well (e.g., Lojack [3]). 
Many industry pundits see a “green field” of monitoring 
applications that will be enabled by this “sea change” 
caused by networks of low-cost sensor devices.   

3.1 Emerging sensor-based applications 
There are obvious applications of sensor network 

technology in the military domain. For example, the US 
Army is investigating putting vital-signs monitors on all 
soldiers, so that they can optimize medical triage in 
combat situations. In addition, there is already a GPS 
system in many military vehicles, but it is not connected 
yet into a closed-loop system. Instead, the army would 
like to monitor the position of all vehicles and determine, 
in real time, if they are off course.  Additionally, they 
would like a sensor on the gun turret; together with 
location, this will allow the detection of crossfire 
situations.  A sensor on the gas gauge will allow the 
optimization of refueling.  In all, an army battalion of 
30,000 humans and 12,000 vehicles will soon be a large-
scale sensor network of several hundred thousand nodes 
delivering state and position information in real time.   

Processing nodes in the network and downstream 
servers must be capable of dealing with this “firehose” of 

data. Required operations include sophisticated alerting, 
such as the platoon commander wishes to know when 
three of his four vehicles cross the front line. Also 
required are historical queries, such as “Where has 
vehicle 12 been for the last two hours?” Lastly, 
requirements encompass longitudinal queries, such as 
“What is the overall state of readiness of the force right 
now?” 

Other sensor-based monitoring applications will also 
come over time in many non-military applications. 
Monitoring traffic congestion and suggesting alternate 
travel routes is one example. A related application is 
variable, congestion-based tolling on highway systems, 
which was the inspiration behind the Linear Road 
benchmark [9]. Amusement parks will soon turn passive 
wristbands on customers into active sensors, so that rides 
can be optimized and lost children located. Cell phones 
are already active devices, and one can easily imagine a 
service whereby the closest restaurant to a hungry 
customer can be located. Even library books will be 
sensor tagged, because if one is mis-shelved, it may be 
lost forever in a big library. 

There is widespread speculation that conventional 
DBMSs will not perform well on this new class of 
monitoring applications. In fact, on Linear Road, 
traditional solutions are nearly an order of magnitude 
slower than a special purpose stream processing engine 
[9]. The inapplicability of the traditional DBMS 
technology to streaming applications is also bolstered by 
an examination of the current application areas with 
streaming data. We now discuss our experience with such 
an application, financial-feed processing. 

3.2 An existing application:            
financial-feed processing 

Most large financial institutions subscribe to feeds that 
deliver real-time data on market activity, specifically 
news, consummated trades, bids and asks, etc. Reuters, 
Bloomberg and Infodyne are examples of vendors that 
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Figure 3: The Feed Alarm application in StreamBase 



 

deliver such feeds. Financial institutions have a variety of 
applications that process such feeds. These include 
systems that produce real-time business analytics, ones 
that perform electronic trading, ones that ensure legal 
compliance of all trades to the various company and SEC 
rules, and ones that compute real-time risk and market 
exposure to fluctuations in foreign exchange rates. The 
technology used to implement this class of applications is 
invariably “roll your own”, because application experts 
have not had good luck with off-the-shelf system 
software products. 

In order to explore feed processing issues more deeply, 
we now describe in detail a specific prototype 
application, which was specified by a large mutual fund 
company. This company subscribes to several 
commercial feeds, and has a current production 
application that watches all feeds for the presence of late 
data. The idea is to alert the traders if one of the 
commercial feeds is delayed, so that the traders can know 
not to trust the information provided by that feed. This 
company is unhappy with the performance and flexibility 
of their “roll your own” solution and requested a pilot 
using a stream processing engine.   

The company engineers specified a simplified version 
of their current application to explore the performance 
differences between their current system and a stream 
processing engine. According to their specification, they 
were looking for maximum message processing 
throughput on a single PC-class machine for a subset of 
their application, which consisted of two feeds reporting 
data from two exchanges.   

Specifically, there are 4500 securities, 500 of which 
are “fast moving”. A stock tick on one of these securities 
is late if it occurs more than five seconds after the 
previous tick from the same security. The other 4000 
symbols are slow moving, and a tick is late if 60 seconds 
have elapsed since the previous tick.  

There are two feed providers and the company wished 
to receive an alert message each time there is a late tick 
from either provider. In addition, they wished to maintain 
a counter for each provider. When 100 late ticks have 
been received from either provider, they wished to 
receive a special “this is really bad” message and then to 
suppress the subsequent individual tick reports  

The last wrinkle in the company’s specification was 
that they wished to accumulate late ticks from each of 
two exchanges, say NYSE and NASD, regardless of 
which feed vendor produced the late data. If 100 late 
messages were received from either exchange through 
either feed vendor, they wished to receive two additional 
special messages. In summary, they want four counters, 
each counting to 100, with a resulting special message. 
An abstract representation of the query diagram for this 
task is shown in Figure 3. 

Although this prototype application is only a subset of 
the application logic used in the real production system, it 
represents a simple-to-specify task on which performance 
can be readily measured; as such, it is a representative 

example. We now turn to the speed of this example 
application on a stream processing engine as well as an 
RDBMS. 

4. Performance discussion 
The example application discussed in the previous 

section was implemented in the StreamBase stream 
processing engine (SPE) [5], which is basically a 
commercial, industrial-strength version of Aurora [8, 13]. 
On a 2.8Ghz Pentium processor with 512 Mbytes of 
memory and a single SCSI disk, the workflow in Figure 3 
can be executed at 160,000 messages per second, before 
CPU saturation is observed. In contrast, StreamBase 
engineers could only coax 900 messages per second from 
an implementation of the same application using a 
popular commercial relational DBMS.  

In this section, we discuss the main reasons that result 
in the two orders of magnitude difference in observed 
performance. As we argue below, the reasons have to do 
with the inbound processing model, correct primitives for 
stream processing, and seamless integration of DBMS 
processing with application processing. In addition, we 
also consider transactional behavior, which is often 
another major consideration. 

4.1 “Inbound” versus “outbound” processing 
Built fundamentally into the DBMS model of the 

world is what we term “outbound” processing, illustrated 
in Figure 4. Specifically, one inserts data into a database 
as a first step (step 1). After indexing the data and 
committing the transaction, that data is available for 
subsequent query processing (step 2) after which results 
are presented to the user (step 3). This model of “process-
after-store” is at the heart of all conventional DBMSs, 
which is hardly surprising because, after all, the main 
function of a DBMS is to accept and then never lose data.  

In real-time applications, the storage operation, which 
must occur before processing, adds significantly both to 
the delay (i.e., latency) in the application, as well as to the 
processing cost per message of the application. An 
alternative processing model that avoids this storage 
bottleneck is shown graphically in Figure 5. Here, input 
streams are pushed to the system (step 1) and get 
processed (step 2) as they “fly by” in memory by the 
query network. The results are then pushed to the client 
application(s) for consumption (step 3). Reads or writes 
to storage are optional and can be executed 
asynchronously in many cases, when they are present. 
The fact that storage is absent or optional saves both on 
cost and latency, resulting in significantly higher 
performance. This model, called “inbound” processing, is 
what is employed by a stream processing engine such as 
StreamBase.  

One is, of course, led to ask “Can a DBMS do inbound 
processing?” DBMSs were originally designed as 
outbound processing engines, but grafted triggers onto 
their engines as an afterthought many years later.  There 
are many restrictions on triggers (e.g., the number 



 

allowed per table) and no way to ensure trigger safety 
(i.e., ensuring that triggers do not go into an infinite 
loop). Overall, there is very little or no programming 
support for triggers. For example, there is no way to see 
what triggers are in place in an application, and no way to 
add a trigger to a table through a graphical user interface. 
Moreover, virtual views and materialized views are 
provided for regular tables, but not for triggers. Lastly, 
triggers often have performance problems in existing 
engines. When StreamBase engineers tried to use them 
for the feed alarm application, they still could not obtain 
more than 900 messages per second. In summary, triggers 
are incorporated to the existing designs as an afterthought 
and are thus second-class citizens in current systems.  

As such, relational DBMSs are outbound engines onto 
which limited inbound processing has been grafted. In 
contrast, stream processing engines, such as Aurora and 
StreamBase are fundamentally inbound processing 
engines.  From the ground up, an inbound engine looks 
radically different from an outbound engine. For 
example, an outbound engine uses a “pull” model of 
processing, i.e., a query is submitted and it is the job of 
the engine to efficiently pull records out of storage to 
satisfy the query.  In contrast, an inbound engine uses a 
“push” model of processing, and it is the job of the engine 
to efficiently push incoming messages through the 
processing steps entailed in the application.   

Another way to view the distinction is that an 
outbound engine stores the data and then executes the 
queries against the data.  In contrast, an inbound engine 
stores the queries and then passes the incoming data 
(messages) through the queries.   

Although it seems conceivable to construct an engine 
that is either an inbound or an outbound engine, such a 
design is clearly a research project. In the meantime, 
DBMSs are optimized for outbound processing, and 
stream processing engines for inbound processing.  In the 
feed alarm application, this difference in philosophy 
accounts for a substantial portion of the performance 
difference observed. 

4.2 The correct primitives 
SQL systems contain a sophisticated aggregation 

system, whereby a user can run a statistical computation 
over groupings of the records from a table in a database. 
The standard example is: 
 

Select avg (salary) 
From employee 
Group by department 

 
When the execution engine processes the last record in 

the table, it can emit the aggregate calculation for each 
group of records. However, this construct is of little 
benefit in streaming applications, where streams continue 
forever and there is no notion of “end of table”.   

Consequently, stream processing engines extend SQL 
(or some other aggregation language) with the notion of 
time windows. In StreamBase, windows can be defined 
based on clock time, number of messages, or breakpoints 
in some other attribute.  In the feed alarm application, the 
leftmost box in each stream is such an aggregate box.  
The aggregate groups stocks by symbol and then defines 
windows to be ticks 1 and 2, 2 and 3, 3 and 4, etc. for 
each stock.  Such “sliding windows” are often very useful 
in real-time applications. 

In addition, StreamBase aggregates have been 
constructed to deal intelligently with messages which are 
late, out-of-order, or missing. In the feed alarm 
application, the customer is fundamentally interested in 
looking for late data. StreamBase allows aggregates on 
windows to have two additional parameters. The first is a 
timeout parameter, which instructs the StreamBase 
execution engine to close a window and emit a value even 
if the condition for closing the window has not been 
satisfied. This parameter effectively deals with late or 
missing tuples. The second parameter is slack, which is a 
directive to the execution engine to keep a window open, 
after its closing condition has been satisfied. This 
parameter addresses disorder in tuple arrivals. These two 
parameters allow the user to specify how to deal with 
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stream abnormalities and can be effectively utilized to 
improve system resilience. 

In the feed alarm application each window is two ticks, 
but has a timeout of either 5 or 60 seconds. This will 
cause windows to be closed if the inter-arrival time 
between successive ticks exceeds the maximum defined 
by the user. This is a very efficient way to discover late 
data; i.e., as a side effect of the highly-tuned aggregate 
logic. In the example application, the box after each 
aggregate discards the valid data and keeps only the 
timeout messages. The remainder of the application 
performs the necessary bookkeeping on these timeouts. 

Having the right primitives at the lower layers of the 
system enables very high performance. In contrast, a 
relational engine contains no such built-in constructs. 
Simulating their effect with conventional SQL is quite 
tedious, and results in a second significant difference in 
performance. 

It is possible to add time windows to SQL, but these 
make no sense on stored data. Hence, window constructs 
would have to be integrated into some sort of an inbound 
processing model.  

4.3 Seamless integration of DBMS processing and 
application logic 

Relational DBMSs were all designed to have client-
server architectures. In this model, there are many client 
applications, which can be written by arbitrary people, 
and which are therefore typically untrusted. Hence, for 
security and reliability reasons, these client applications 
are run in a separate address space from the DBMS. The 
cost of this choice is that the application runs in one 
address space while DBMS processing occurs in another, 
and a process switch is required to move from one 
address space to the other. 

In contrast, the feed alarm application is an example of 
an embedded system. It is written by one person or group, 
who is trusted to “do the right thing”. The entire 
application consists of (1) DBMS processingfor 
example the aggregation and filter boxes, (2) control 
logic to direct messages to the correct next processing 
step, and (3) application logic. In StreamBase, these three 
kinds of functionality can be freely interspersed. 
Application logic is supported with user-defined boxes, 
the Count100 box in our example financial-feed 
processing application. The actual code, shown in Figure 

6, consists of four lines of C++ that counts to 100 and sets 
a flag that ensures that the correct messages are emitted. 
Control logic is supported by allowing multiple 
predicates in a filter box, and thereby multiple exit arcs. 
As such, a filter box performs “if-then-else” logic in 
addition to filtering streams. 

In effect, the feed alarm application is a mix of DBMS-
style processing, conditional expressions, and user-
defined functions in a conventional programming 
language. This combination is performed by StreamBase 
within a single address space without any process 
switches. Such a seamless integration of DBMS logic 
with conventional programming facilities was proposed 
many years ago in Rigel [23] and Pascal-R [25], but was 
never implemented in commercial relational systems. 
Instead, the major vendors implemented stored 
procedures, which are much more limited programming 
systems. More recently, the emergence of object-
relational engines provided blades or extenders, which are 
more powerful than stored procedures, but still do not 
facilitate flexible control logic.   

Embedded systems do not need the protection provided 
by client-server DBMSs, and a two-tier architecture 
merely generates overhead. This is a third source of the 
performance difference observed in our example 
application. 

Another integration issue, not exemplified by the feed 
alarm example, is the storage of state information in 
streaming applications. Most stream processing 
applications require saving some state, anywhere from 
modest numbers of megabytes to small numbers of 
gigabytes. Such state information may include (1) 
reference data (i.e., what stocks are of interest), (2) 
translation tables (in case feeds use different symbols for 
the same stock), and (3) historical data (e.g., “how many 
late ticks were observed every day during the last year?”). 
As such, tabular storage of data is a requirement for most 
stream processing applications.  

StreamBase embeds BerkeleyDB [4] for state storage. 
However, there is approximately one order of magnitude 
performance difference between calling BerkeleyDB in 
the StreamBase address space and calling it in client-
server mode in a different address space. This is yet 
another reason to avoid process switches by mixing 
DBMS and application processing in one address space. 

Count 100 same as

Map
F.evaluate:

cnt++
if (cnt % 100 != 0) if !suppress emit lo-alarm 

else emit drop-alarm
else emit hi-alarm, set suppress = true

 
Figure 6: “Count100” logic 



 

Although one might suggest that DBMSs enhance their 
programming models to address this performance 
problem, there are very good reasons why client-server 
DBMSs were designed the way they are. Most business 
data processing applications need the protection that is 
afforded by this model. Stored procedures and object-
relational blades were an attempt to move some of the 
client logic into the server to gain performance.  To move 
further, a DBMS would have to implement both an 
embedded and a non-embedded model, with different run 
time systems.  Again, this would amount to giving up on 
“one size fits all”. 

In contrast, feed processing systems are invariably 
embedded applications. Hence, the application and the 
DBMS are written by the same people, and driven from 
external feeds, not from human-entered transactions. As 
such, there is no reason to protect the DBMS from the 
application, and it is perfectly acceptable to run both in 
the same address space. In an embedded processing 
model, it is reasonable to freely mix application logic, 
control logic and DBMS logic, which is exactly what 
StreamBase does. 

4.4 High availability  
It is a requirement of many stream-based applications 

to have high availability (HA) and stay up 7x24. Standard 
DBMS logging and crash recovery mechanisms (e.g., 
[22]) are ill-suited for the streaming world as they 
introduce several key problems. 

First, log-based recovery may take large number of 
seconds to small numbers of minutes. During this period, 
the application would be “down”. Such behavior is 
clearly undesirable in many real-time streaming domains 
(e.g., financial services). Second, in case of a crash, some 
effort must be made to buffer the incoming data streams, 
as otherwise this data will be irretrievably lost during the 
recovery process. Third, DBMS recovery will only deal 
with tabular state and will thus ignore operator states. For 
example, in the feed alarm application, the counters are 
not in stored in tables; therefore their state would be lost 
in a crash. One straightforward fix would be to force all 
operator state into tables to use DBMS-style recovery; 
however, this solution would significantly slow down the 
application.  

The obvious alternative to achieve high availability is 
to use techniques that rely on Tandem-style process pairs 
[11]. The basic idea is that, in the case of a crash, the 
application performs failover to a backup machine, which 
typically operates as a “hot standby”, and keeps going 
with small delay. This approach eliminates the overhead 
of logging. As a case in point, StreamBase turns off 
logging in BerkeleyDB.   

Unlike traditional data-processing applications that 
require precise recovery for correctness, many stream-
processing applications can tolerate and benefit from 
weaker notions of recovery. In other words, failover does 
not always need to be “perfect”. Consider monitoring 
applications that operate on data streams whose values 

are periodically refreshed. Such applications can often 
tolerate tuple losses when a failure occurs, as long as such 
interruptions are short. Similarly, if one loses a couple of 
ticks in the feed alarm application during failover, the 
correctness would probably still be preserved. In contrast, 
applications that trigger alerts when certain combinations 
of events happen, require that no tuples be lost, but may 
tolerate temporary duplication. For example, a patient 
monitoring application may be able to tolerate duplicate 
tuples (``heart rate is 79'') but not lost tuples (``heart rate 
has changed to zero''). Of course, there will always be a 
class of applications that require strong, precise recovery 
guarantees. A financial application that performs 
portfolio management based on individual stock 
transactions falls into this category.  

As a result, there is an opportunity to devise simplified 
and low overhead failover schemes, when weaker 
correctness notions are sufficient. A collection of detailed 
options on how to achieve high availability in a streaming 
world has recently been explored [17]. 

4.5 Synchronization 
Many stream-based applications rely on shared data 

and computation. Shared data is typically contained in a 
table that one query updates and another one reads. For 
example, the Linear Road application requires that 
vehicle-position data be used to update statistics on 
highway usage, which in turn are read to determine tolls 
for each segment on the highway. Thus, there is a basic 
need to provide isolation between messages.  

Traditional DBMSs use ACID transactions to provide 
isolation (among others things) between concurrent 
transactions submitted by multiple users. In streaming 
systems, which are not multi-user, such isolation can be 
effectively achieved through simple critical sections, 
which can be implemented through light-weight 
semaphores. Since full-fledged transactions are not 
required, there is no need to use heavy-weight locking-
based mechanisms anymore. 

In summary, ACID properties are not required in most 
stream processing applications, and simpler, specialized 
performance constructs can be used to advantage. 

5. One size fits all? 
The previous section has indicated a collection of 

architectural issues that result in significant differences in 
performance between specialized stream processing 
engines and traditional DBMSs. These design choices 
result in a big difference between the internals of the two 
engines. In fact, the run-time code in StreamBase looks 
nothing like a traditional DBMS run-time. The net result 
is vastly better performance on a class of real-time 
applications. These considerations will lead to a separate 
code line for stream processing, of course assuming that 
the market is large enough to facilitate this scenario.  

In the rest of the section, we outline several other 
markets for which specialized database engines may be 
viable.  



 

5.1 Data warehouses 
The architectural differences between OLTP and 

warehouse database systems discussed in Section 2 are 
just the tip of the iceberg, and additional differences will 
occur over time. We now focus on probably the biggest 
architectural difference, which is to store the data by 
column, rather than by row. 

All major DBMS vendors implement record-oriented 
storage systems, where the attributes of a record are 
placed contiguously in storage. Using this “row-store” 
architecture, a single disk write is all that is required to 
push all of the attributes of a single record out to disk.   
Hence, such a system is “write-optimized” because high 
performance on record writes is easily achievable. It is 
easy to see that write-optimized systems are especially 
effective on OLTP-style applications, the primary reason 
why most commercial DBMSs employ this architecture. 

In contrast, warehouse systems need to be “read-
optimized” as most workload consists of ad-hoc queries 
that touch large amounts of historical data. In such 
systems, a “column-store” model where the values for all 
of the rows of a single attribute are stored contiguously is 
drastically more efficient (as demonstrated by Sybase IQ 
[6], Addamark [1], and KDB [2]).  

With a column-store architecture, a DBMS need only 
read the attributes required for processing a given query, 
and can avoid bringing into memory any other irrelevant 
attributes. Given that records with hundreds of attributes 
(with many null values) are becoming increasingly 
common, this approach results in a sizeable performance 
advantage for warehouse workloads where typical queries 
involve aggregates that are computed on a small number 
of attributes over large data sets. The first author of this 
paper is engaged in a research project to explore the 
performance benefits of a column-store system. 

5.2 Sensor networks 
It is not practical to run a traditional DBMS in the 

processing nodes that manage sensors in a sensor network 
[21, 24]. These emerging platforms of device networks 
are currently being explored for applications such as 
environmental and medical monitoring, industrial 
automation, autonomous robotic teams, and smart homes 
[16, 19, 26, 28, 29].  

In order to realize the full potential of these systems, 
the components are designed to be wireless, with respect 
to both communication and energy. In this environment, 
bandwidth and power become the key resources to be 
conserved. Furthermore, communication, as opposed to 
processing or storage access, is the main consumer of 
energy. Thus, standard DBMS optimization tactics do not 
apply and need to be critically rethought. Furthermore, 
transactional capabilities seem to be irrelevant in this 
domain. 

In general, there is a need to design flexible, light-
weight database abstractions (such as TinyDB [18]) that 
are optimized for data movement as opposed to data 
storage.  

5.3 Text search 
None of the current text search engines use DBMS 

technology for storage, even though they deal with 
massive, ever-increasing data sets. For instance, Google 
built its own storage system (called GFS [15]) that 
outperforms conventional DBMS technology (as well as 
file system technology) for some of the reasons discussed 
in Section 4.  

A typical search engine workload [12, 15] consists of a 
combination of inbound streaming data (coming from 
web crawlers), which needs to be cleaned and 
incorporated into the existing search index, and ad hoc 
look-up operations on the existing index. In particular, the 
write operations are mostly append-only and read 
operations sequential. Concurrent writes (i.e., appends) to 
the same file are necessary for good performance. Finally, 
the large number of storage machines, made up of 
commodity parts, ensure that failure is the norm rather 
than the exception. Hence, high availability is a key 
design consideration and can only be achieved through 
fast recovery and replication.  

Clearly, these application characteristics are much 
different from those of conventional business-processing 
applications. As a result, even though some DBMSs has 
built-in text search capabilities, they fall short of meeting 
the performance and availability requirements of this 
domain: they are simply too heavy-weight and inflexible. 

5.4 Scientific databases 
Massive amounts of data are continuously being 

gathered from the real-world by sensors of various types, 
attached to devices such as satellites and microscopes, or 
are generated artificially by high-resolution scientific and 
engineering simulations.  

The analysis of such data sets is the key to better 
understanding physical phenomena and is becoming 
increasingly commonplace in many scientific research 
domains. Efficient analysis and querying of these vast 
databases require highly-efficient multi-dimensional 
indexing structures and application-specific aggregation 
techniques. In addition, the need for efficient data 
archiving, staging, lineage, and error propagation 
techniques may create a need for yet another specialized 
engine in this important domain. 

5.5 XML databases 
Semi-structured data is everywhere. Unfortunately, 

such data does not immediately fit into the relational 
model. There is a heated ongoing debate regarding how to 
best store and manipulate XML data. Even though some 
believe that relational DBMSs (with proper extensions) 
are the way to go, others would argue that a specialized 
engine is needed to store and process this data format. 

6. A Comment on Factoring 
Most stream-based applications require three basic 

services: 



 

 
• Message transport: In many stream applications, 

there is a need to transport data efficiently and 
reliably among multiple distributed machines. The 
reasons for these are threefold. First, data sources 
and destinations are typically geographically 
dispersed. Second, high performance and availability 
requirements dictate the use of multiple cooperating 
server machines. Third, virtually all big enterprise 
systems consist of a complicated network of business 
applications running on a large number of machines, 
in which an SPE is embedded. Thus, the input and 
outputs messages to the SPE need to be properly 
routed from and to the appropriate external 
applications.  

• Storage of state: As discussed in Section 4.3, in all 
but the most simplistic applications, there is a need to 
store state, typically in the form of read-only 
reference and historical tables, and read-write 
translation (e.g., hash) tables.  

• Execution of application logic: Many streaming 
applications demand domain-specific message 
processing to be interspersed with query activity. In 
general, it is neither possible nor practical to 
represent such application logic using only the built-
in query primitives (e.g., think legacy code).  

 
A traditional design for a stream-processing 

application spreads the entire application logic across 
three diverse systems: (1) a messaging system (such as 
MQSeries, WebMethods, or Tibco) to reliably connect 
the component systems, typically using a 
publish/subscribe paradigm; (2) a DBMS (such as DB2 or 
Oracle) to provide persistence for state information; and 
(3) an application server (such as WebSphere or 
WebLogic) to provide application services to a set of 
custom-coded programs. Such a three-tier configuration 
is illustrated in Figure 7.  

Unfortunately, such a design that spreads required 
functionality over three heavyweight pieces of system 

software will not perform well. For example, every 
message that requires state lookup and application 
services will entail multiple process switches between 
these different services. 

In order to illustrate this per message overhead, we 
trace the steps taken when processing a message. An 
incoming message is first picked up by the bus and then 
forwarded to the custom application code (step 1), which 
cleans up and then processes the message. If the message 
needs to be correlated with historical data or requires 
access to persistent data, then a request is sent to the DB 
server (steps 2-3), which accesses the DBMS. The 
response follows the reverse path to the application code 
(steps 4-5). Finally, the outcome of the processed 
message is forwarded to the client task GUI (step 6). 
Overall, there are six “boundary crossings” for processing 
a single message. In addition to the obvious context 
switches incurred, messages also need to transformed on-
the-fly, by the appropriate adapters, to and from the 
native formats of the systems, each time they are picked 
up from and passed on to the message bus. The result is a 
very low useful work to overhead ratio. Even if there is 
some batching of messages, the overhead will be high and 
limit achievable performance. 

To avoid such a performance hit, a stream processing 
engine must provide all three services in a single piece of 
system software that executes as one multi-threaded 
process on each machine that it runs. Hence, an SPE must 
have elements of a DBMS, an application server, and a 
messaging system. In effect, an SPE should provide 
specialized capabilities from all three kinds of software 
“under one roof”. 

This observation raises the question of whether the 
current factoring of system software into components 
(e.g., application server, DBMS, Extract-Transform-Load 
system, message bus, file system, web server, etc.) is 
actually an optimal one. After all, this particular 
decomposition arose partly as a historical artifact and 
partly from marketing happenstance. It seems like other 
factoring of systems services seems equally plausible, and 
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Figure 7: A multi-tier stream processing architecture 



 

it should not be surprising to see considerable evolution 
of component definition and factoring off into the future. 

7. Concluding Remarks 
In summary, there may be a substantial number of 

domain-specific database engines with differing 
capabilities off into the future.  We are reminded of the 
curse “may you live in interesting times”.  We believe 
that the DBMS market is entering a period of very 
interesting times. There are a variety of existing and 
newly-emerging applications that can benefit from data 
management and processing principles and techniques. At 
the same time, these applications are very much different 
from business data processing and from each other ― 
there seems to be no obvious way to support them with a 
single code line. The “one size fits all” theme is unlikely 
to successfully continue under these circumstances. 
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