
 Towards a Streaming SQL Standard

Namit Jain
Shailendra Mishra
Anand Srinivasan

Oracle Corp.
Redwood Shores, CA

Johannes Gehrke
Cornell University

Jennifer Widom
Stanford University

Hari Balakrishnan
Uğur Çetintemel
Mitch Cherniack
Richard Tibbetts

Stan Zdonik
StreamBase, Inc.

Lexington, MA

ABSTRACT
This paper describes a unification of two different SQL
extensions for streams and its associated semantics. We use the
data models from Oracle and StreamBase as our examples. Oracle
uses a time-based execution model while StreamBase uses a
tuple-based execution model. Time-based execution provides a
way to model simultaneity while tuple-based execution provides a
way to react to primitive events as soon as they are seen by the
system.

The result is a new model that gives the user control over the
granularity at which one can express simultaneity. Of course, it is
possible to ignore simultaneity altogether. The proposed model
captures ordering and simultaneity through partial orders on
batches of tuples. The batching and the ordering are encapsulated
in and can be modified by means of a powerful new operator that
we call SPREAD. This paper describes the semantics of SPREAD
and gives several examples of its use.

1. INTRODUCTION
Stream processing has been around for a while (e.g., [2, 6, 12, 14,
19, 23]). There have been many research prototypes and now
there are several industrial products, some of which are derived
from their respective academic heritage [15, 19]. Each system
supports a stream-oriented query language. They are essentially
all SQL extensions that incorporate a notion of a window on a
stream as a way to convert an infinite stream into a finite relation
in order to apply relational operators.

As the industry matures, there is a need for a single standard
language. It is tempting to say that such a language is simply an
agreement over simple syntactic differences. About a year ago,
Oracle and StreamBase embarked on a project to create a
convergence language in which these simple differences would be

resolved. What emerged was a realization that there were
fundamental differences in the basic model that made
convergence difficult. From both sides, there were things that one
model could do that the other model could not do. What was
needed was a new model that spanned the original two.
This paper describes these semantic differences and proposes a
new model that seems to give us the best of both worlds. In fact,
we believe that it provides new functionality that neither model
could provide heretofore.
While it is not our intension to present a complete language
standard in this paper, we believe that by leveling the playing
field at the model level, such a standard is much closer.
In this paper, we only present our final solution. It is worth
pointing out that several other alternative formulations were
proposed along the way, including one that increased the number
of window types to cover all combinations of the two systems’
semantics. These other proposals, while workable, seemed to be
“big switch” solutions. That is to say, by using one subset of
features you would get the Oracle model, while using a disjoint
subset of features, you would get the StreamBase model. We
believe that the current solution is much less of “big switch” in
that it cleanly integrates the two, allowing the user to smoothly
move from one to the other and to arbitrarily many points in
between.
The remainder of this paper is organized as follows. In Section 2,
we give an informal overview of some cases neither data model
was expressive enough to handle by illustrating them through
queries on the widely-used Linear-Road Benchmark. In Section 3,
we pinpoint the differences between the models through several
abstract examples. In Section 4, we describe the proposed
unification model in detail. In Section 5, we present the syntax
and semantics of a new operator called SPREAD and illustrate it
using examples. In Section 6, we revisit our examples from
Section 3 in the light of the proposed model. We illustrate the key
components of the new model in the context of a network
intrusion detection query in Section 7. We comment on
implementation issues in Section 8, discuss related work in
Section 9, and present concluding remarks in Section 10.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

2. BACKGROUND AND MOTIVATION
2.1 A Brief Description of the Two Models
In what follows, we assume a basic understanding of stream query
languages and the notion of a window.

The Oracle Model
The Oracle model is based on CQL [1]. In this model, tuples have
timestamps, and there is no ordering between tuples with identical
timestamps. Tuples with the same timestamp value are said to be
simultaneous. The processing follows a time-driven model: the
value of a window is computed at each timestamp by evaluating
the history of its input streams as of that timestamp. Furthermore,
all processing at a given timestamp happens instantaneously.
Thus, all derived tuples also get labeled with the same timestamp
value. In this way, each relation has a value as of each
timestamp.

The StreamBase Model
In the StreamBase model, tuples also have timestamps, some of
which might be identical. The conceptual execution, however,
assigns an internal rank to tuples based on their arrival order to
the system and ensures that an input tuple, as well as all tuples
derived from its processing, are processed as far as possible
before another input tuple with a higher rank. Unlike the Oracle
processing model, which is time-driven, the StreamBase model is
tuple-driven: each relation (logically) has a value as of each tuple.
This value is obtained by evaluating the window on the history of
its input stream(s) as of that tuple.
It is important to note that despite StreamBase’s tuple-at-a-time
execution model, the values of relations need not change on every
tuple. In fact, for some window definitions (e.g., time-based
windows), the window contents will in general not change on the
arrival of each tuple. A time-based window will only change
when it has collected all the tuples within the next timestamp
range.

2.2 Linear-Road Example
In this section, we will discuss a few queries that are based on the
Linear Road Benchmark (LRB) [3]. We show how the current
Oracle and StreamBase models each fall short on some of these
queries. The purpose of this section is to introduce some of the
shortcomings of the two models that we study here. Section 3 will
look at these issues in more depth. Here and in the remainder of
the paper, we take some liberties with the exact syntax of the two
languages, but this should be clear from the context.

A position report in LRB has the form:
 (Type, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos).
For ease of discussion, we use an abbreviated version as follows:

(VID, Spd; Time)
Here:

• Time (0 . . . 10799) is a timestamp identifying the time at
which the position report was emitted,

• VID (0 . . . MAXINT) is an integer vehicle identifier
identifying the vehicle that emitted the position report, and

• Spd (0 . . . 100) is an integer reflecting the speed of the
vehicle (in MPH).

Scenario

Let S be the stream of car position reports (as in LRB). Below we
show a sample of this data for two time units.

S (VID, Spd; Time) = (1,50;1) (2,50;1)
 (1,50;2) (2,50;2) (3,20;2)

Neither time-basis nor tuple-basis works
We would like to find, for each input report on stream S, the
average speed of all cars as of the current timestamp. Let P1 be
that stream.
Since we want a result every time a new tuple arrives to the
system, we expect 5 results on the above data. Computing the
average speed (as of each arrival) will drive us to use a row-based
window defined as S[rows 1] as in

P1 = ISTREAM (SELECT avg (Spd) as AvgSpd, Time
 FROM S[rows 1])

which will produce different results for P1 with the two original
models:
 Oracle
 P1 (AvgSpd; Time) = (50;1) (20;2)
 StreamBase
 P1 (AvgSpd; Time) = (50;1) (50;1) (50;2) (50;2) (20;2)
Notice that both of these answers are wrong. Oracle does not
produce 5 answers because it is forced to evaluate by time.
StreamBase produces 5 values, but the “rows 1” window will not
allow us to group the tuples by time unit.

Tuple-basis doesn’t work; Time-basis works
On the other hand, suppose the query wants to report an answer
for each time-interval, both languages will define a window as
S[range 1] as in

 P1 = ISTREAM (SELECT avg (Spd) as AvgSpd, Time
 FROM S[range 1])

which will produce P1 as:
P1 (AvgSpd; Time) = (50;1) (40;2)

Further, suppose that we want a stream of the total number of cars
on the road for each time interval. The query that achieves this is

P2 = ISTREAM (SELECT count(distinct (VID)) as Count, Time
 FROM S[range 1])
which produces:

P2 (Count; Time) = (2;1) (3;2)
Now, we want to correlate these two derived streams to detect the
event at which the average speed is below 45 and the total number
of cars is two or more. This requires a JOIN of P1 and P2 as
follows:

Q = ISTREAM (SELECT *
 FROM P1[range 1] as SpdReport, P2[range 1] as NumCars
 WHERE SpdReport.AvgSpd< 45 AND NumCars.Count >= 2)

Q will produce different results in each of the two models. Oracle
joins the results across time intervals giving us the following
result:

Q (AvgSpd, Count; Time) = (40,3; 2)

Because StreamBase serializes all tuples and relies on this total
order, there exists an arrival order (as given in the earlier
definition of S) such that it will return:

Q (AvgSpd, Count; Time) = (40,2; 2) (40,3; 2)
The first tuple in this result is spurious since the speed of 40 and
the count of 2 never co-existed. In other words, the implied
simultaneity is not expressible.

Tuple-basis works; Time-basis doesn’t
Assume you want a report of the average speed of the last two
cars that you have heard from (independently of time).
StreamBase can do this trivially with the following query:

Q=ISTREAM (SELECT avg(Spd) as AvgSpd
 FROM S[rows 2])
For the same query, Oracle will again produce only two answers,
one for each timestamp:

Q (AvgSpd; Time) = (50;1) (35;2)
Furthermore, the third report (1,50;2) is ignored entirely in these
answers since the window of size two at time = 2 skips over it.
This is an example of the “evaporating tuples” problem which
will be explained in greater detail in what follows.

3. DIFFERENCES BETWEEN MODELS
While there are many differences between the two languages, we
will initially restrict our attention to those that revolve around the
notion of time, tuple ordering, window evaluation, and the
interplay among these concepts. To highlight the differences
between the two models, we use some simple examples.
We assume in the examples that tuples have a special attribute
called “time” whose value is assigned by the system.
Thus our tuples have the following schema:

(value; time)
We will consider a stream S with the above schema and (possibly
sliding) row-based and range-based window queries.
Let us now point out some of the differences between the two
models and discuss the implications of these differences.

Difference 1: Change of Window State

Example 1: Identical Results Without Simultaneity
As a first example, consider the following stream:

S1(value; time) = (10;1) (20;2) (30;3) (40;4)
Consider the following query:

ISTREAM (SELECT * FROM S [rows 1])
In both the Oracle model and the StreamBase model, this query
will return the following result:

(10;1) (20;2) (30;3) (40;4)
However, consider the following stream which contains two
tuples with the same timestamp time=1.

Example 2: Difference in Window State Change With
Simultaneous Tuples

S2(value;time) = (10;1) (20;1) (30;3) (40;4)

ISTREAM (SELECT * FROM S2 [rows 1])

In the Oracle Model, the state of a window always changes at
timestamp boundaries. When time=1, one of the two tuples with
timestamp 1 will be picked non-deterministically. Thus the result
will be one of the following two streams:

(10;1) (30;3) (40;4) or (20;1) (30;3) (40;4)
The reason that one of the two tuples with time=1 seems to
“evaporate” is that the two tuples with time=1 arrive
simultaneously, since they have the same timestamp, and thus no
further temporal distinction is possible between them. Windows
get re-evaluated only when timestamps change.
In the StreamBase Model, the state of the window changes
whenever a new tuple arrives. Thus, the output of the query in
Example 2 in the StreamBase model would be

(10;1) (20;1) (30;3) (40;4)
We would like to emphasize that both models of window state
change are meaningful and useful, and it would be best left up to
the user to be able to choose when she would like the state of a
window query to change.

Difference 2: Temporal Resolution
Both the Oracle and the StreamBase models have temporal
resolution at the level of a timestamp. The StreamBase model also
provides one refinement of timestamp by totally ordering all
tuples in the system. Thus, while in the Oracle model all tuples
arriving at a given timestamp are considered unordered, in the
StreamBase model, there exists a total ordering between these
tuples (which, for example, may be the order of tuple arrival).
To illustrate this difference, consider two streams that we would
like to join. Due to the arrival order (call this the rank) of tuples,
we have an explicit order between these tuples, but we cannot
exploit this order in the semantics of the query. Let us illustrate
this issue in Example 3.

Example 3: Difference in Order Beyond Timestamps
S2(value; time) = (10;1) (20;1)
S3(value; time) = (100;1) (200;1)

Now consider the following query:

ISTREAM (SELECT * FROM S2[rows 1], S3[rows 1])
In the Oracle Model, the output is one of the following tuples,
without being able to consider the order across streams:

(10,100;1)
(20,100;1)
(10,200;1)
(20,200;1)

In the StreamBase model, we have to consider the arrival order to
determine the output of this query. We give a few example arrival
orders (among the 4! possible arrival orders) and their associated
outputs. Recall that in StreamBase, the [rows 1] windows always
contain the last arriving tuple in each stream.
 Arrival order Output
(10;1) (20;1) (100;1) (200;1) (20,100;1) (20,200;1)
(20;1) (10;1) (100;1) (200;1) (10,100;1) (10,200;1)
(20;1) (100;1) (200;1) (10;1) (20,100;1)(20,200;1) (10,200;1)

While it may seem that the choice of the highest resolution
possible (e.g., at the level of a tuple) is always preferable, this is
not always the case. Temporal ordering is only useful as long as
there is semantic meaning to it. For example, the notion of a total
order may be semantically meaningful as a refinement of a
timestamp when tuples enter the system and in other special
cases; however, in general it is not always clear what assignment
of unique ranks to downstream tuples to use. Let us illustrate this
issue through two examples

Example 4: No Semantically Meaningful Ordering Across
Streams
S4(value;time)=(10;1) (20,2) (30;3) (40;4)

S4´(value;time)=ISTREAM (SELECT * FROM S4 [rows 1])

S4˝(value;time)=ISTREAM (SELECT * FROM S4 [rows 1])

Now what (total) order should there exist between the tuples in
S4´ and S4˝, in particular in comparison to each other? Should
the tuples in S4΄ obtain the lower rank since the definition of S4´
comes earlier in the DDL than the definition of Stream S4˝? There
does not seem to be a principled approach with a clean semantic
meaning of order in this setting.
The inherent problems of always requiring a total order can also
be seen in the following example.

Example 5. No Semantically Meaningful Ordering When
Joining with Static Relations

S5(value; time) = (10;1) (10;2)
R(value) = {(10), (10)}

ISTREAM (SELECT *
 FROM S5[rows 1] AS W, R
 WHERE W.value = R.value)

In this query, each of the tuples in S5 joins with two tuples from
the static relation R. Now what order should exist between the
two new tuples? Note that if we were to enforce a total order it
would lose its semantic meaning in the output stream; there is still
order up to the “equivalence class” in which each of the two
output tuples reside, but there is no order between these two
tuples. Thus, always requiring a total order between all tuples is
also not an acceptable solution.

Example 6. Orders Between Total Order and Timestamp
Order
There is one further issue to consider that we will also illustrate
through an example. Consider the following stream with attributes
“value” and “batch” in addition to the mandatory attribute “time”.
Let us assume that the semantics of batch are that batch is
consistent with time: If t.time < t΄.time then t.batch < t΄.batch.
Consider the following stream S6 with the window query below:
S6(value,batch;time) = (10,1;1) (20,1;1) (30,2;1) (40,2;1)

ISTREAM(
SELECT *
FROM S6[range 1])

If we would consider S6 as a total order, then the result would
contain the four tuples from S6. However, “batch” is a

semantically meaningful attribute as a pseudo-refinement of time,
and thus a user may want to see the state of the window only
change whenever a new batch of tuples arrives or if the window
slides. None of the two existing models can capture this
semantics; tuples do not get added to the window one by one as in
the StreamBase model nor do they get added a timestamp at a
time as in the Oracle model.
These examples illustrate that we need to relax simultaneity in
order to be able to expose inherent, semantically meaningful order
between tuples with the same timestamp. We also need to be able
to define when a window gets evaluated in order to avoid the
evaporating tuples problem. Next, we will describe a proposal
based on equivalence classes that we believe strikes a fine balance
between these new demands and the general concerns of staying
conceptually clean and keeping a simple processing model.

4. PROPOSED MODEL
We now discuss the key components of the proposed convergence
language by giving a precise description of the model and
illustrating it with examples.
The key insight is that evaluation of results in both systems is
triggered by the arrival of a batch of tuples. In the Oracle model
the batch is defined by like values of a timestamp. In the
StreamBase model, batches are always of size one tuple. By
controlling the batching of tuples and the ordering between these
batches, we can simulate both models plus many alternatives that
neither model can capture.
In what follows, we assume that the reader is familiar with
elementary group theory, in particular with the notion of an
equivalence relation and the induced quotient set and the notion
of a partial order.
We say that an equivalence relation ~1 is a refinement of an
equivalence relation ~2 if whenever x~1y holds then x~2y also
holds (~1 makes the equivalence classes of ~2 “finer”). We say
that a partial order <1 is a refinement of a partial order <2 if
whenever x<2y holds, x<1y also holds.

4.1 Streams
Streams and Timestamps
A stream S has tuples T = (s;t), where t is the timestamp of the
tuple. The timestamp is from a discrete domain TIME with a total
order <t.
There is an unbounded but finite number of tuples with the same
timestamp. The timestamps induce an equivalence relation ~t over
the tuples in S such that two tuples are in the same equivalence
class if they have the same timestamp. Formally, for tuples T1,
T2, T1~tT2 if T1.t = T2.t; we will also write [T1]t=[T2]t where
[T1]t denotes the equivalence class of tuple T1 with respect to the
equivalence relation ~t. We will call this equivalence relation the
timestamp equivalence relation. We call tuples with the same
timestamp timestamp-simultaneous.
The total order on the timestamp domain induces a total order < in
the quotient set of the equivalence relation ~t: We define that
[T1]t < [T2]t if T1.t < T2.t. This induces a partial order <t on
tuples from stream S: For any two tuples T1 and T2 from S, we
define that T1 <t T2 if [T1]t < [T2]t. (Note that we have
overloaded the symbol < to denote different orders, but its
meaning is clear from the context.)

Example: Consider the stream S(value; time) with tuples (a;1),
(b;2), (c;2), and (d,4) shown in Figure 1. Tuples (b;2) and (c;2)
are timestamp-simultaneous, it holds that [(b;2)]t=[(c;2)]t.
Timestamps are essential to any steam processing model.
However, as the examples in Sections 2 and 3 demonstrated, we
need to be able to further distinguish between tuples with the
same timestamp. We do this by refining the partial order <t
between tuples that is induced by the timestamps even further
through the introduction of batches.

(a;1)

(b;2)

(c;2)
(d;4)

= equivalence
classes

Figure 1 – A Stream with the Timestamp Equivalence

Relation
Batches
In addition to the timestamp equivalence relation, a stream S has
an associated batch equivalence relation ~S that is a refinement of
the timestamp equivalence relation ~t. We will call a set of tuples
that is equivalent with respect to ~S a batch of tuples and we will
say that two tuples t1 and t2 such that t1~st2 are batch-
simultaneous. There also exists a total order <S in the quotient set
of the equivalence relation ~S with the property that the induced
partial order on the tuples of S is a refinement of the partial order
induced by the timestamps. Thus <S does not only subsume the
timestamp order <t, it also defines a partial order on all the
timestamp-simultaneous tuples at time t; we will use <S to denote
both the partial order between tuples and the total order in the
quotient set of ~S; its usage will be clear from the context.
We will number the batches of a stream with (t,i), where t is the
timestamp of the tuples in the batch and i is the number of the
batch within the timestamp. Thus, at time t, the first batch is
numbered (t,1), the second batch is numbered (t,2) and so on.
Note that this ordering is unique since there is a total order on all
the batches on a single stream. We refer to this batch number of a
tuple T as BATCHS(T). The timestamp of a tuple is immutable,
but as we will see later, tuples within a timestamp are batched and
how tuples are assigned to batches can be changed through the
query language. Note that we have so far only defined batches for
a single stream; we will extend this notion in Section 4.2.
With batches, two tuples Ti and Tj from the same stream S must
have one of the following ordering relationships:
1. Ti <t Tj: Ti precedes Tj (or Tj follows Ti) in the timestamp
order
2. Ti ~t Tj: Ti has the same timestamp as Tj, they are timestamp-
equivalent. Now we either have:
 2.1: Ti ~S Tj: Ti and Tj are timestamp-simultaneous and batch-
simultaneous
 2.2: (Ti <S Tj) or (Tj <S Ti): Ti and Tj are not batch-
simultaneous, and the batch-order on stream S induces a total
order between Ti and Tj.

Example (Continued.)

As an example consider the stream S(value; time) = (a;1) <S
{(b;2), (c;2)} <S {(d;2), (e;2)} <S (f;4) shown in Figure 2. There
exist four tuples with timestamp=2, they belong to two batches.
The first batch numbered (2,1) consists of tuples (b;2) and (c;2)
and the second batch numbered (2,2) consists of tuples (d;2) and
(e;2).

(a;1)

(b;2)

(c;2)

(f;4)

(d;2)

(e;2)

Figure 2 - Multiple Equivalence Classes per Timestamp

4.2 Stream Groups
So far, we have only discussed order within a single stream. The
timestamp equivalence relation and its associated total order in
the quotient set of the equivalence relation can be extended to a
set of streams in a straightforward way since we can always
compare the timestamps of any two tuples T1 and T2 regardless
of what stream they come from. Thus, for any two tuples T1 and
T2, we can always determine that one of the following two
conditions holds:
1. T1 ~t T2: T1 and T2 have the same timestamp and thus are
timestamp-equivalent.
2. (T1 <t T2) or (T2 <t T1): Either T1 has a smaller timestamp
than T2 or vice versa.
However, such an extension is non-trivial for batches since
batches within the same timestamp across streams cannot be
compared. We address this issue by introducing the novel concept
of a stream group.

Stream Groups
A stream group G={S1,S2,…,Sk} is a set of streams with an
associated equivalence relation ~G and a total order <G in the
quotient set of this equivalence relation. A stream group is
consistent if for each stream S in G the following holds:

For all pairs of tuples T1, T2 from the same stream S
such that T1 and T2 have the same timestamp t:
T1 ~S T2 if and only if T1 ~G T2 and
T1 <S T2 if and only if T1 <G T2.

In other words, the equivalence relation ~G and the total order in
the quotient set <G across all streams is consistent with the
equivalence relations and total orders in the quotient set of each
individual stream S in G. We will only consider consistent stream
groups in the remainder of this paper.
Thus a stream group also induces a total order on the batches, and
we can assign tuples within a timestamp again a unique batch
number; we denote this batch number of a tuple T within a stream
group G by BATCHG(T).

4.3 Streams to Relations and Back
4.3.1 Batch-Varying Relations
Our notion of batches defines batch-varying relations. In
particular, the granularity of relation states is defined as
individual batches instead of time or individual tuples. Thus, a

window defined on a stream S will have a new state for each
batch of S and each window state is simultaneous with the
corresponding batch. This definition naturally generalizes to work
with stream groups as well, thus allowing us to reason about the
ordering (or simultaneity) of windows defined on the same stream
group but on different streams. This is necessary, say, for the
execution of a join of two windows defined on the same stream
group.
Each table also has a value as of a given batch. However, how a
table maps its progression of states into this domain is not part of
our language specification.
4.3.2 Relations to Streams
We use two basic relation-to-stream operations, ISTREAM
(Insert Stream) and DSTREAM (Delete Stream). Conceptually,
ISTREAM captures tuples that are inserted to a relation (such as a
window) over time, whereas DSTREAM captures the tuples that
“fall out” of the relation, as used in CQL [1]. While the
granularity of captures in CQL is a time tick, our capture
granularity is a batch. Without loss of generality, we define these
operations on windows as follows:

• ISTREAM of window W defined on S as of batch bi contains
a tuple t if t is in W as of batch bi but not as of bj, where bj is
the batch that immediately precedes bi on S.

• Similarly, DSTREAM of window W on S as of batch bi
contains a tuple t if t is in W as of batch bj but not as of bi
where bj is the batch that immediately precedes bi on S.

One subtle issue that arises with ISTREAM and DSTREAM
involves deciding whether two tuples with the same value
(identical attribute-value pairs) are to be treated as the same or
not. For example, consider a tuple (a;1) to be inserted into
window W with state {(a;1), (b;1)}. There are two possible
semantics one can assume in this case: we can use set-difference
semantics and treat the two (a;1) tuples as identical. With this
difference semantics, the ISTREAM of W will not contain the
new tuple (a;1) as another tuple with the same value already exists
in W. We can also define an alternative semantics by assuming
that tuples are inherently different regardless of their values, in
which case the new tuple will be contained in the ISTREAM. We
call this latter semantics delta semantics.
Because these two semantics are applicable and useful in different
situations, we decide to include both in our proposed language.
Specifically, we use the keywords DIF and DEL along with
ISTREAM and DSTREAM to indicate which of the two
semantics we intend to use.

4.4 Revising Existing Models
With this notation, we now revisit the two stream processing
models that this paper unites.
The Oracle Model.
For a stream S the equivalence relation ~S is equal to the
timestamp equivalence relation ~t, i.e., all tuples with the same
timestamp are not only timestamp-simultaneous, but also in the
same batch. Since the quotient set of ~S contains only one batch
per time, there is no further ordering <S.
All existing streams form a single stream group with all tuples
within the same timestamp across all the streams belonging to one
equivalence class of ~G. Thus there is also no further ordering <G.
The StreamBase Model.

In the StreamBase model, the equivalence relation ~S is trivial,
i.e., it only contains elements of the form (T,T) and thus each
batch consists of one tuple. Thus, the total order <S orders all the
tuples with the same timestamp on a single stream.
In the StreamBase model, all streams together form a single
stream group G with each tuple again in its own equivalence class
of ~G and <G defines a total order across all streams between all
tuples with timestamp t (recall that <G refines <t). Thus in the
StreamBase model, there is a total order between all tuples in the
system.

4.5 Windows
One of the main constructs in any stream query language is a
window. Let us now explain how to form windows. Windows
take as input a stream and result in batch-varying relations. There
are two fundamental aspects to the semantics of windows.

• Deciding when a new window state is triggered.

• Deciding the contents of that window state.
In our novel model, a window on stream S is triggered whenever
a new batch of tuples arrives, and thus the relation that is created
from the stream varies with each batch of arriving tuples. Let us
make this notion a bit more formal and introduce the two basic
types of windows that every stream processing language supports
in our new model.
In this section, we always assume that the window constructs are
part of a larger query, and that all the streams (and time-varying
relations) are part of the same stream group G. We denote the
equivalence relation that is associated with the temporal group G
simply by < since G is clear from the context.

4.5.1 Row-based windows
A row-based window is specified on a stream S as

S [rows n]
The output is a relation that varies with each batch of tuples in the
input stream. More formally, R(t,i) consists of the n tuples of S
with the largest batch numbers that are ≤ (t,i). If this set consists
of more than n tuples, then we non-deterministically choose
among the set of tuples with the smallest batch number in order to
reduce the number of tuples to n. Formally:
Rin(t,i) = {(s,t´) in S : BATCHG(s,t´) ≤ (t,i) and
 |{(r,t˝) in S : BATCHG(r,t˝) ≤ BATCHG(t,i)
 and BATCHG(r,t´)>BATCH(s,t´)| < n}.
Let (t’,j) be the smallest batch number among all tuples in
Rin(t,i). Then we choose n-|Rin(t,i)| additional tuples from the
batch before (t,j’); R(t,i) consists of Rin(t,i) union these additional
tuples.
When n=infinity, then R(t,i) consists of all tuples in S up to and
including batch (t,i).

Example. As an example of how row-based windows work,
consider the stream that is illustrated in Figure 2. The states that
would be created for a window defined as S[rows 2] would be:
 R(1,1) = {(a;1)}
 R(2,1) = {(b;2), (c;2)}
 R(2,2) = {(d;2), (e;2)}
 R(4,1) = {(d;2), (f;4)} or {(e;2), (f;4)}

The last result is non-deterministic because, while (f;4) is
certainly the tuple with the largest timestamp in stream S, the
second to last tuple could be (d;2) or (e;2) since they are batch-
simultaneous. Note that (b;2) and (c;2) are not considered since
they belong to an earlier batch even though they have the same
timestamp as (d;2) and (e;2). (The SPREAD command that we
introduce in the next section allows us to impose an order
between these two tuples and thus eliminate the non-
determinism.)

4.5.2 Range-based windows
A time-based window is defined as
S [range T]
The output is a time-varying relation that varies with each batch
of tuples. We denote by t the timestamp of the batch-varying
relation and by i the batch number:
R(t,i) = {s | (s,t’) in S and BATCHGr(s,t’) <= (t,i) and (t’ >=
max{t-T,0})}
When T=0, then R(t,i) consists of all tuples (s;t) with timestamp t
up and including batch number i. When T=infinity, then R(t,i)
consists of tuples obtained from all elements in S up to the ith
batch at timestamp t.

Example. If we now form a range-based window over the same
stream (Figure 2) as S[range 2], we get the window states that are
enumerated below:
 R(1,1) = {(a;1)}
 R(2,1) = {(a;1), (b;2), (c;2)}
 R(2,2) = {(a;1), (b;2), (c;2), (d;2), (e;2)}
 R(3,1) = {(b;2), (c;2), (d;2), (e;2)}
 R(4,1) = {(f;4)}
Note that R(3,1) has the given value because of the absence of a
batch at time t=3. A window state is generated here for the range-
based window because timestamp 3 exists even if a tuple was not
generated for that timestamp.

4.5.3 Partitioned Windows
A partitioned window is defined as
S [Partition by A1,...,Ak rows n]
The output is a batch-varying relation that varies with each batch
of tuples in the input stream.
Intuitively, this window logically partitions S into different
substreams based on equality of attributes A1, A2,…, Ak, then
computes row-based windows of size n independently on each
substream, and finally takes the union of the corresponding
batches of these windows to produce the output relation.
This is analogous to the way partitioned windows work in CQL
[1]; however, unlike in CQL where all partitioned windows get
evaluated simultaneously at each timestamp, our windows get
evaluated with the arrival of batches on each window. As such, all
windows do not necessarily get evaluated simultaneously. We
omit a formal description due to space constraints.

4.5.4 Sliding Windows
Most data models have a means for specifying the way that
windows move from one state to the next. This is typically
referred to as a window slide. We incorporate window slides into

our new model in a very simple way. Batches will still trigger
new windows, but there will be requirements on the number of
rows or the number of timestamps that must pass before a new
window will be allowed to form. We will illustrate this by
considering row windows and range windows separately.

Row-based slides
A row window can slide by some number of tuples as in S[rows 1
slide 2]. In this case, we are defining a 1-tuple window such that
there must be at least two tuples since the last window before a
new window state is formed.
Consider the following example. Suppose that the stream S is as
follows with curly brackets indicating batches:

S(value;time) = {(a;1) (b;1) (c;1)} {(d;2) (e;2) (f;2)}

 {(g;3)} {(h;3)} {(i;4) (j;4)} {(k;4)}

The parentheses indicate batches and the integer values represent
tuples with the given timestamp. A window defined on stream S
as S[rows 2 slide 2] would produce the following three states

[(b;1) (c;1)]
[(e;2), (f;2)]
[(g;3), (h;3)]
……

The first batch of tuples triggers a window and the second and
third tuple form the first 2-row window. The window slides and
as soon as the next batch is seen, the slide condition is satisfied.
That is, two new tuples have been seen since the last window
state. At this point, the second and third tuple from the second
batch are taken as the next window state. We must see two
additional batches before the condition of two new tuples is
satisfied, which explains the third window state.

Range-based slide
Here it is still batches that trigger a new window. The basic form
for a range-based sliding window on stream S is S[range 2 slide
2]. Only batches that have timestamps, ts, such that (ts mod 2 = 0)
will trigger a new window. As an example, consider stream S as
before. A window defined on S as S[range 2 slide 2] would
generate the following three states.

[(a;1) (b;1) (c;1) (d;2) (e;2) (f;2)]
[(g;3) (h;3) (i;4) (j;4)]
[(g;3) (h;3) (i;4) (j;4) (k;4)]

In the case of a range-based window, we produce new windows as
long as the window timestamp range is obeyed. Thus, in this
example, we get two windows for timestamp range 3-4.

5. MANIPULATING ORDERS
Given the simple model of streams, stream groups, and windows
described above, the goal is now to develop mechanisms to create
and manipulate ordering relationships among the tuples, within
and across streams. We accomplish this goal through a powerful
stream-to-stream operator called SPREAD.
Intuitively, SPREAD allows us to modify the batch equivalence
relation ~G and the total order between batches <G for a stream
group G. Let us start by defining the syntax and semantics of
SPREAD.

5.1 SPREAD: Syntax and Semantics
For simplicity of exposition, we first discuss the single-stream
version of SPREAD that takes a single input stream and produces
a single output stream. We will then generalize the description to
multiple streams. We assume without loss of generality that the
attribute list just consists of a single attribute “Attr”;
generalization to a list of attributes is straightforward.

5.1.1 Single-Stream SPREAD
The syntax for the single-input SPREAD is as follows:

SPREAD InStream [ALL] [ON Attr] OutStream
There are two flavors of SPREAD, distinguished by the keyword
ALL. The first flavor ignores existing orders, whereas the second
retains them.

SPREAD ALL. SPREAD ALL orders tuples into batches by
constructing a new batch equivalence relation ~OutStream from the
stream InStream. Consider two tuples T1 and T2 such that
T1~tT2, i.e., T1 and T2 are timestamp equivalent in InStream.
Then the SPREAD above defines the following batch equivalence
relation:

T1~OutStreamT2 if [T1]t=[T2]t and T1.Attr = T2.Attr.
The total order < OutStream is defined as follows:

[T1]<OutStream[T2] if
T1 <t T2 or (T1 ~t T2 and T1.Attr < T2.Attr.

Thus SPREAD orders the batches within a timestamp by the value
of column Attr. If T1 and T2 have the same value for Attr, they
are batch-simultaneous in OutStream.
Thus, the outcome of SPREAD is independent of any existing
batch equivalence class on InStream. If no Attr is specified, then
SPREAD creates a random total order. Note that with SPREAD,
we can now force a specific total order on tuples in a stream with
the same timestamp: We simply have to create and maintain an
attribute, or a list of attributes, whose values are guaranteed to
have the desired ordering properties for tuples with the same
timestamp. In some systems such an attribute will be called a
rank attribute.

SPREAD. SPREAD creates a new equivalence relation that is a
refinement not only of the timestamp equivalence relation but of a
possibly existing batch equivalence relation on the input stream.
More formally, SPREAD orders tuples into batches by
constructing a new batch equivalence relation ~OutStream on the
stream OutStream that is a refinement of any existing batch
equivalence relation ~InStream. Consider two tuples T1 and T2 such
that T1~tT2 and T1~InStream T2, i.e., T1 and T2 are timestamp and
batch equivalent in Instream. Then we define the batch-
equivalence relation that is induced by the SPREAD command at
the beginning of this section as follows:

T1~OutStreamT2 if
T1~InstreamT2 and T1.Attr = T2.Attr

The total order < OutStream is defined as follows:
[T1]<OutStream[T2] if

[T1] <InStream [T2] or
[T1] ~InStream [T2] and T1.Attr < T2.Attr

In other words, if two tuples T1 and T2 are already batch-ordered
(T1 < T2 or T2 < T1) in InStream, SPREAD does not have any
affect on the relationship between those tuples. However,
SPREAD further orders batch-simultaneous tuples in InStream
based on Attr.

Propagating ordering information from the inputs to outputs:
We use a simple rule to infer the order information for the derived
tuples: all tuples that get produced as the result of processing a
given batch are simultaneous with that batch. Notice that the basic
CQL time-propagation model is a specific instance of this rule.
Figure 3 shows three examples of the use of SPREAD on a single
stream. In the top two cases, the tuples are SPREAD on the basis
of an attribute value. The bottom SPREAD does not specify any
attribute, indicating that any total ordering of the tuples is
acceptable.

5.1.2 Multi-Stream SPREAD
Now let’s consider multiple input-output streams.
SPREAD InStream_L [ALL] [ON Attr] OutStream_L

(a,1;1)
(b,2;1)
(b,3;1)

SPREAD S ON rank

(a,1;1) (b,3;1)(b,2;1)

(a,1;1)
(b,2;1)
(b,3;1)

SPREAD S ON value

(a,1;1) (b,2;1)
(b,3;1)

(a,1,1)
(b,2;1)
(b,3;1)

SPREAD S

(b,2;1) (b,3;1)(a,1;1)

S = (value, rank; time)

S = (value, rank; time)

S = (value, rank; time)

Note: any total
ordering is OK

Figure 3 - Single Input Spread Examples

(a,1;1)(a,1;1)
(b,2;1) SPREAD S1, S2 ON rank

(c,3;1)
(b,4;1)

(b,2;1)

(c,3;1) (b,4;1)

(a,1;1)
(b,2;1) SPREAD S1, S2 ON value

(c,3;1)
(b,4;1)

(a,1;1) (b,2;1)

(b,4;1) (c,3;1)

(a,1;1)
(b,2;1) SPREAD S1, S2

(c,3;1)
(b,4;1)

(b,2;1) (b,2;1)

(c,3;1) (b,4;1)

S1 = (value, rank; time)

S2 = (value, rank; time)

S1 = (value, rank; time)

S2 = (value, rank; time)

S1 = (value, rank; time)

S2 = (value, rank; time)
Note: any total
ordering is OK

Figure 4 - Multi-Input Spread Examples

SPREAD ALL takes the tuples that have the same timestamp on
all input streams specified in InStream_L, reorders them
according to Attr as described above, and then places them on the
corresponding output streams specified by OutStream_L. If no
Attr is specified, then the result is a random total order across all
output streams.
SPREAD retains the existing batch equivalence relation within
the stream group and refines it in the same way as described in
Section 5.1.1. Note that it is imperative that all input streams
belong to the same stream group as otherwise there may not exist
a total order among the batches such that SPREAD can refine this
total order.
Figure 4 shows three examples of the use of SPREAD on two
input streams. In the top two cases, the tuples are SPREAD on the
basis of an attribute value. Note here that multi-input SPREAD
creates new equivalence classes and orders among tuples on
different streams. The bottom SPREAD does not specify any
attribute, indicating that any total ordering of the tuples across the
two streams is acceptable.

5.2 A JOIN Example using SPREAD
Consider two streams S1 and S2 as illustrated in Figure 5.
Suppose that we first spread these two streams using SPREAD
S1, S2 ON rank INTO S1a, S2a and then join S1a and S2a with
one-tuple row-based windows. The result is shown at the bottom
of Figure 5.
As shown above, we now generate window states as of a batch.
Similarly, results are also generated as of a batch.
As a further example of multi-input SPREAD and JOIN, consider
the same input streams and a SPREAD S1, S2 ON time INTO
S1a, S2a with the same JOIN command as before. The result can
be seen at the bottom of Figure 6.

6. DIFFERENCES REVISITED
In Section 3, we saw examples of specific problems that occur
with the Oracle and StreamBase languages. The main issue is that
neither of the languages has sufficient expressive power to affect
the order in which tuples are processed and results are generated.
In particular, the Oracle language suffers from a coarse notion of
simultaneity, which is exclusively driven by time and cannot

exploit additional ordering information. On the other hand, the
StreamBase language has no notion of simultaneity and thus has
to “artificially” introduce order at times.
The new model described above does not suffer from these
problems for two reasons. First, there is inherent support for
simultaneity and partial order. Second, the SPREAD operator can
be used to introduce order and simultaneity as needed.
We now revisit some of the previous examples to illustrate the
utility of SPREAD in addressing the aforementioned issues.
First, let’s recall the query from Example 2, which had the
evaporating tuples problem, and rewrite it using the partial order
notation.
S2(value;time) = {(10;1), (20;1)} < {(30;3)} < {(40;4)}

ISTREAM (SELECT * FROM S2 [rows 1])
The evaporating tuples problem arose here because of the
simultaneity of the first two tuples. In the new model, this issue
can be easily addressed by:

SPREAD S2
which yields as a possibility the following output stream
S2 = {(10;1)} < {(20;1)} < {(30;3)} < {(40;4)}
This is also the output we get as the result of the query. While this
example introduced order arbitrarily, it is also possible to leverage
additional ordering information not reflected by time. Let’s
rewrite Example 3 with the modification that tuples now have an
additional “rank” attribute whose value reflects the tuple arrival
order:
S2(value, rank; time) = {(10,1;1),(20,3;1)}
S3(value, rank; time) = {(100,2;1),(200,4;1)}

ISTREAM(SELECT * FROM S2[rows 1], S3[rows 1])
(Note that both the within-stream and the cross-stream order of
the tuples is undefined.)
Here we can break the simultaneity and produce a total order
consistent with the rank values by applying “SPREAD ALL S1,
S2 on rank into S1', S2' ”, that leads to the following output
streams:
S2'(value, rank; time) = {(10,1;1)}1 < {(20,3;1)}3
S3"(value, rank; time) = {(100,2;1)}2 < {(200,4;1)}4

(a,1;1)
(b,2;1)

SPREAD S1, S2 ON time INTO S1a, S2a
(c,3;1)
(b,4;1)

(a,1;1)
(b,2;1)

(c,3;1)
(b,4;1)

S1

S2

SELECT * FROM S1a[rows 1], S2a[rows 1]

S1a

S2a

b1

Result = {[b,2,1,b,4,1]}, @ batch b1

Figure 6 – Same Join, Different SPREAD

(a,1;1)
(b,2;1)

(c,3;1)
(b,4;1)

(a,1;1) (b,2;1)

(c,3;1) (b,4;1)

SELECT * FROM S1a[rows 1], S2a[rows 1]

Result = { }, @ batch b1
{ }, @ batch b2
{[b,2,1,c,3,1]}, @ batch b3
{[b,2,1,b,4,1]} @ batch b4

b1 b4

SPREAD S1, S2 ON rank INTO S1a, S2a

S1

S2

S1a

S2a

b2 b3

Figure 5 – A JOIN Example Using SPREAD

(The numbers in superscripts indicate the cross-stream order of
the batches.) The output of the query is as follows:
{(10,1,100,2;1)} < {(20,3,100,2;1)} < {(20,3,200,4;1)}
Examples 4 and 5 illustrated the non-intuitive implications of a
model that always requires a total order. Since our proposal
allows and properly propagates simultaneity, it does the “right
thing” here. That is, in Example 4, the simultaneity of tuples
across S4’ and S4’’ are automatically maintained, and in Example
5, the two new tuples created for each S5 tuple are simultaneous.
In both cases, the new model obtains the desired behavior by
default without any explicit SPREAD operations.
Finally, let us consider Example 6 again using the new notation:
S6(value, batch; time) = {(10,1;1), (20,1;1), (30,2;1), (40,2;1)}

ISTREAM(SELECT*
 FROM S6[range 1])

Here if we apply SPREAD S6 on batch, the updated S6 becomes
S6 = {(10,1;1), (20,1;1)} < {(30,2;1), (40,2;1)}
Here, the tuples with the same batch values are placed in the same
equivalence class and are thus batch-simultaneous.

7. INTRUSION DETECTION EXAMPLE
We now present a more sophisticated example that exercises the
various constructs that we have introduced so far.

Scenario
We consider a simplified scheme for network intrusion detection:
the goal is to track those external Internet hosts that initiate
connections to hosts within a protected network to identify if they
are potentially engaging in port-scanning activities. Port scans are
one common way in which an attacker finds vulnerabilities to
exploit, because it is a way to find out if a particular service (such
as a TCP port) is active or not on a host.

In this case, the input stream, CStream, is a stream of connection
summaries, where a connection has a source IP address (srcIP),
destination IP address, destination port number, and a Status field
(status) indicating whether the connection succeeded or failed.
Further, each connection has an arrival number
(arrival_number), a unique sequence number applied by the
system, as well as a field (time) that represents the connection
attempt time on the destination system.
A “scanner alert” occurs when there are X failed connections out
of Y successive attempts. Our objective is to raise a high-level
alert if, for a specific srcIp, the number of scanner-alerts in the
last minute is greater than the number of scanner-alerts in the
previous minute.

Query
The connection stream, CStream, might contain many
simultaneous connection attempts. Thus, we first need to make
sure that we process each attempt; in particular, we need to break
the simultaneity to avoid the “evaporating tuples” problem
studied earlier. We can accomplish this by spreading CStream as
follows:
SPREAD CStream ON arrival_number INTO COrderedStream;

The new stream, COrderedStream, has the exact same tuples as
CStream, but its tuples are totally ordered on the basis of their

arrival orders. As such no two tuples on COrderedStream are
simultaneous.
We now define a new stream, ScannerAlertStream, which
contains the sources producing scanner-alerts we described above:
ScannerAlertStream =
ISTREAM (SELECT srcIp

 FROM COrderedStream[Partition by srcIp rows Y]
 WHERE status = 'FAILURE'
 GROUP BY srcIP
 HAVING count(*) > X)

Now, we need to compute the number of scanner-alerts in the last
minute and the last two minutes. Since we need only one entry
per minute per srcIp (updated every minute), we first need to
"restore" simultaneity back again on the ScannerAlertStream,
which we can achieve by spreading on time as follows:

SPREAD ALL ScannerAlertStream ON time
INTO ScannerAlertSimStream;

On this stream, we define two relations: Relation MinuteCount:

SELECT srcIp, count(*) as min_count
FROM ScannerAlertSimStream[range 1 minute slide 1 minute]
GROUP-BY srcIp;

Relation TwoMinuteCount:

SELECT srcIp, count(*) as two_min_count
FROM ScannerAlertSimStream[range 2 minutes slide 1 minute]
GROUP-BY srcIp;

Notice that by virtue of the automatic propagation of ordering
information from the input streams to the derived streams, the
states of MinuteCount and TwoMinuteCount are now updated
simultaneously every minute. Finally, the desired output stream,
AlertStream, can be defined as:

ISTREAM(SELECT srcIp

 FROM MinuteCount as M, TwoMinuteCount as T
 WHERE M.srcIp = T.srcIp and
 2*M.min_count > T.two_min_count)

This example illustrates the use of SPREAD to break and recover
simultaneity as well as the propagation of ordering/simultaneity
information across nested queries.

8. A BRIEF NOTE ON IMPLEMENTATION
The main result reported here is on stream data models and
semantics; however, we take this opportunity to say a few words
about implementation and extensibility issues.
As in either of the original languages, relations (incl. windows)
take on a progression of new states, each one of which will
potentially trigger evaluation of the query. Once a new relation
state in a given query has been determined, the query is evaluated
exactly as it would be in SQL, thus, enabling all standard
optimization techniques. This is all still true in this new model
with the caveat that relation states are produced as the result of
batches.

The batches will be determined by the use of SPREAD. Thus we
might ask how we implement SPREAD. Of course, this is up to
each vendor that adopts this notion and would likely be
proprietary. A naïve implementation would collect all the tuples
for a given timestamp and would apply the sorting criteria implied
by the SPREAD to create the new batches. An optimization
could occur if we knew that all values (within a timestamp) of the
SPREAD attribute have arrived, allowing us to create a batch
early. This could be accomplished through the use of heartbeat
tuples, much as this technique is used in time-based processing.
We also note that our proposal does not require changes to the
existing relational operators or preclude adding new ones. This is
a direct result of the decoupling between the window semantics
and operator semantics. SPREAD only affects the former; as
such, standard relational operators as well as new UDFs that work
on relations can be immediately used in our framework.

9. RELATED WORK
There have been many stream query languages proposed over the
last several years [1, 7, 8, 10, 11, 13]. The goal of this section is
to describe the evaluation models of other stream query engines
(both academic and commercial), and to report whether they more
closely resemble the Streambase model (tuple-driven) or the
Oracle model (time-driven).
It is somewhat surprising that it is not common to find language
descriptions in this arena that explicitly and precisely discuss the
evaluation rules directly. As a result, some of what follows is
based on our best guess. We have learned through the activity
that we report here how subtle evaluation issues can be and how
hard it is to find such a model that satisfies multiple needs. We
hope that this paper will encourage others to evaluate their own
systems in this light.
In many cases, scheduling policies were discussed (e.g., [5, 9]),
but it is important to note that scheduling policies are orthogonal
to the evaluation model. For example, [9] discusses a batch
scheduling approach that schedules query evaluation when
batches of input tuples arrive, but this is an optimization meant to
preserve the semantics of the tuple-driven model. Similarly, one
could imagine that a scheduler for a time-driven model could
schedule computation with the arrival of every tuple, taking
advantage of lulls between tuple arrivals to partially generate
results that will be emitted with the next clock tick.
Both tuple-driven and time-driven evaluation models have
historical precedents set prior to the emergence of stream
processing systems. The tuple-driven model is the basis for view
maintenance [18]; any change in a base table must be reflected in
a dependent view for the view to be accurate. Thus, view
maintenance occurs in response to the event of a tuple being
inserted into, deleted from or changed within a base table. The
implementation of view maintenance can be lazy, but this is an
optimization and does not change the semantics of what is
considered to be a correct view. Similarly, database integrity
constraints (which can be thought of as views that return Boolean
responses to updates (allow or disallow)) and triggers have an
execution model that is tuple-based. On the other hand, time-
driven evaluation models evolved from early work in continuous
query processing (e.g., Tapestry [21]). A parameter of these
systems was a time interval that determined the frequency of
generating incremental query results.

According to the CCL user manual, [8], CCL supports both tuple-
driven and time-driven evaluation models. This is similar to the
“big switch” model that we mentioned earlier. The default setting
is tuple-driven evaluation. Thus, the CCL query,

 INSERT INTO R1
 SELECT sum (value) as Sum
 FROM s
 KEEP 3 rows
which windows stream S with a tuple-based window of size 3, is
equivalent to the StreamBase query

 R1 = ISTREAM (SELECT sum (value) as Sum
 FROM S [rows 3])
in that it allows windows to include tuples with different
timestamps. For example, let

S (value; time) = (1;1),(2;1),(3;1),(4;1),(5;2),(6;2),(7;3), …
be the input stream such that time is the system-provided
timestamp (expressed as a measure of seconds). Given this
stream, both Coral8 and StreamBase queries would return the
stream,

R1(Sum; time) = (6;1), (9;1), (12;2), (15;2), (18;3) …
To support time-driven evaluation, CCL provides an optional
OUTPUT clause that suppresses outputs except at specified
periods. For example, the CCL query,

 INSERT INTO R2
 SELECT sum (value) AS v
 FROM S
 KEEP 3 rows
 OUTPUT EVERY 1 second
would return results only when an input tuple’s timestamp
reported that a second had “ticked” since the last output. In this
case, the CCL query would return the stream,
 R2(Sum; time) = (9;1), (15;2), …
as this result indicates the sum of the last 3 values seen when
tuple (5;2) arrives (9 = 2+3+4) and when tuple (7;3) arrives (15 =
4+5+6).
ESL, a part of the StreamMill system [7, 25], supports both
internal and external timestamps. Internal timestamps are
generated by the system as tuples arrive, while external
timestamps come from the environment. These timestamps are
used to determine ordering and can be used as a way to
understand when that ordering has been violated (out of order
tuples), but they are not used as the fundamental unit of
evaluation. Instead, tuples are acted on as soon as they become
available, much as in StreamBase.
Time-driven semantics as we have discussed in this paper
originated with the CQL language [24, 1]. The Oracle language is
a direct descendant of CQL.

10. CONCLUSION AND FUTURE WORK
This paper begins the discussion of a SQL-based standard for
streaming databases. It discusses some deep model differences
that exist between Oracle CQL and StreamBase StreamSQL. We
believe that similar differences exist among other prototypes and
products. Until fundamental model differences are settled, there
is little chance of producing a good standard. We believe that this
paper has uncovered differences and proposed a novel way of

resolving them. This proposal has the added benefit that it
increases the expressive power of both languages and gives the
user fine-grained control over time and simultaneous evaluation.
There are many remaining problems that we could investigate on
the road to a complete standard. For example, pattern matching
has been shown to be an important part of any language over
streams. There have been several proposals [4, 16, 17, 20, 22]. In
the same way that we tackled the evaluation model here, it makes
sense for a group to perform a similar exercise for pattern
matching semantics.
Given the new model that is proposed here, there are some
interesting questions regarding how we might efficiently
implement such a model. While, of course, this is not the
business of a standards group, it nonetheless is an important issue
that needs to be addressed. We would need a good way to
represent the current batch state of a stream. Given a batch state,
we would need a good implementation of window generation and
table maintenance.

Acknowledgments. We would like to thank Oracle Corporation
and StreamBase, Inc. for the support that we received in doing
this work. IBM organized a one day meeting in August of 2006
that was very helpful in getting this discussion started. Dieter
Gawlick and Mike Stonebraker had the foresight to put the
Oracle/StreamBase team together that led to this report.

11. REFERENCES
[1] A. Arasu, Arvind; S. Babu J. Widom: The CQL Continuous
Query Language: Semantic Foundations and Query Execution,
VLDB Journal, Vol. 15, No. 2, June, 2006.
[2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik: Aurora: A
New Model and Architecture for Data Stream Management.
VLDB Journal (12)2: 120-139, August 2003.
[3] A. Arasu, M. Cherniack, E.F. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts: Linear Road: A
Stream Data Management Benchmark. VLDB 2004: 480-491
[4] Anonymous: Pattern Matching in Sequences of Rows, SQL
standard proposal, http://asktom.oracle.com/tkyte/row-pattern-
recogniton-11-public.pdf, March, 2007.
[5] B. Babcock, S. Babu, M. Datar, and R. Motwani: Chain:
Operator Scheduling for Memory Minimization in Data Stream
Systems. SIGMOD 2003: 253-264
[6] R.S. Barga, J. Goldstein, M.H. Ali, M. Hong: Consistent
Streaming Through Time: A Vision for Event Stream Processing.
CIDR 2007: 363-374
[7] Y. Bai, H. Thakkar, C. Luo, H. Wang, C. Zaniolo: A Data
Stream Language and System Designed for Power and
Extensibility. CIKM 2006.

[8] Coral8 Inc., Coral8 CCL Reference, available at
http://www.coral8.com/system/files/assets/pdf/5.2.0/Coral8CclRe
ference.pdf
[9] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik, M.
Cherniack, M. Stonebraker: Operator Scheduling in a Data Stream
Manager. VLDB 2003.
[10] S. Chandrasekaran, and M. Franklin: Streaming Queries
over Streaming Data. VLDB 2002.
[11] Cherniack, M.: SQuAl: The Aurora [S]tream [Qu]ery
[Al]gebra, Technical Report, Brandeis University, Nov 2003.
[12] Codehaus.org, Esper online documentation set,
http://esper.codehaus.org/tutorials/tutorials.html, 2007.
[13] Conway, N., An Introduction to Data Stream Query
Processing, Slides from a talk given on May 24, 2007,
http://www.pgcon.org/2007/schedule/attachments/17-
stream_intro.pdf., 2007.
[14] Coral8 Systems, Coral8 CCL Reference Version 5.1,
http://www.coral8.com/system/files/assets/pdf/current/Coral8Ccl
Reference.pdf, 2007.
[15] Coral8 Inc., http://www.coral8.com
[16] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek
Riedewald, Varun Sharma, Walker M. White: Cayuga: A General
Purpose Event Monitoring System. CIDR 2007: 412-422
[17] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, G.
Anderson: SASE: Complex Event Processing over Streams. CIDR
2007.
[18] M. Staudt, M. Jarke: Incremental Maintenance of Externally
Materialized Views. VLDB 1996.
[19] StreamBase Systems, StreamSQL online documentation,
http://streambase.com/developers/docs/latest/streamsql/index.html
, 2007.
[20] S. Reza, C, Zaniolo, A. Zarkesh, J. Adibi: Expressing and
optimizing sequence queries in database systems. ACM Trans.
Database Syst. 29(2): 282-318 (2004).
[21] D. B. Terry, D. Goldberg, D. Nichols, B. M. Oki: Continuous
Queries over Append-Only Databases. SIGMOD 1992: 321-330
[22] E. Wu, Y. Diao, S. Rizvi: High-Performance Complex Event
Processing over Streams. SIGMOD 2006.
[23] P.A. Tucker, D. Maier, T. Sheard, P. Stephens: Using
Punctuation Schemes to Characterize Strategies for Querying over
Data Streams. IEEE TKDE. 19(9): 1227-1240 (2007)
[24] Widom, Jennifer: CQL: A Language for Continuous Queries
over Streams and Relations, Slides from a talk given at the
Database Programming Language (DBPL) Workshop,
http://www-db.stanford.edu/~widom/cql-talk.pdf , 2003.
[25] Zaniolo, C., Luo, C., Wang, H., Bai, Y., Thakkar, H.: An
Introduction to the Expressive Stream Language (ESL), Technical
Report, UCLA, 2006.

