
 Towards a Streaming SQL Standard 
 
 

Namit Jain 
Shailendra Mishra 
Anand Srinivasan 

Oracle Corp.  
Redwood Shores, CA 

 
 

 

Johannes Gehrke 
Cornell University 

Jennifer Widom 
Stanford University 

 
 

 
 

Hari Balakrishnan 
Uğur Çetintemel 
Mitch Cherniack 
Richard Tibbetts 

Stan Zdonik 
StreamBase, Inc. 

Lexington, MA 

ABSTRACT 
This paper describes a unification of two different SQL 
extensions for streams and its associated semantics. We use the 
data models from Oracle and StreamBase as our examples. Oracle 
uses a time-based execution model while StreamBase uses a 
tuple-based execution model. Time-based execution provides a 
way to model simultaneity while tuple-based execution provides a 
way to react to primitive events as soon as they are seen by the 
system. 

The result is a new model that gives the user control over the 
granularity at which one can express simultaneity.  Of course, it is 
possible to ignore simultaneity altogether.  The proposed model 
captures ordering and simultaneity through partial orders on 
batches of tuples. The batching and the ordering are encapsulated 
in and can be modified by means of a powerful new operator that 
we call SPREAD. This paper describes the semantics of SPREAD 
and gives several examples of its use. 

1. INTRODUCTION 
Stream processing has been around for a while (e.g., [2, 6, 12, 14, 
19, 23]). There have been many research prototypes and now 
there are several industrial products, some of which are derived 
from their respective academic heritage [15, 19]. Each system 
supports a stream-oriented query language. They are essentially 
all SQL extensions that incorporate a notion of a window on a 
stream as a way to convert an infinite stream into a finite relation 
in order to apply relational operators. 

As the industry matures, there is a need for a single standard 
language.  It is tempting to say that such a language is simply an 
agreement over simple syntactic differences.  About a year ago, 
Oracle and StreamBase embarked on a project to create a 
convergence language in which these simple differences would be 

resolved. What emerged was a realization that there were 
fundamental differences in the basic model that made 
convergence difficult. From both sides, there were things that one 
model could do that the other model could not do. What was 
needed was a new model that spanned the original two. 
This paper describes these semantic differences and proposes a 
new model that seems to give us the best of both worlds.  In fact, 
we believe that it provides new functionality that neither model 
could provide heretofore.  
While it is not our intension to present a complete language 
standard in this paper, we believe that by leveling the playing 
field at the model level, such a standard is much closer. 
In this paper, we only present our final solution.  It is worth 
pointing out that several other alternative formulations were 
proposed along the way, including one that increased the number 
of window types to cover all combinations of the two systems’ 
semantics.  These other proposals, while workable, seemed to be 
“big switch” solutions.  That is to say, by using one subset of 
features you would get the Oracle model, while using a disjoint 
subset of features, you would get the StreamBase model. We 
believe that the current solution is much less of “big switch” in 
that it cleanly integrates the two, allowing the user to smoothly 
move from one to the other and to arbitrarily many points in 
between. 
The remainder of this paper is organized as follows. In Section 2, 
we give an informal overview of some cases neither data model 
was expressive enough to handle by illustrating them through 
queries on the widely-used Linear-Road Benchmark. In Section 3, 
we pinpoint the differences between the models through several 
abstract examples. In Section 4, we describe the proposed 
unification model in detail. In Section 5, we present the syntax 
and semantics of a new operator called SPREAD and illustrate it 
using examples. In Section 6, we revisit our examples from 
Section 3 in the light of the proposed model. We illustrate the key 
components of the new model in the context of a network 
intrusion detection query in Section 7. We comment on 
implementation issues in Section 8, discuss related work in 
Section 9, and present concluding remarks in Section 10. 
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2. BACKGROUND AND MOTIVATION 
2.1 A Brief Description of the Two Models 
In what follows, we assume a basic understanding of stream query 
languages and the notion of a window. 

The Oracle Model 
The Oracle model is based on CQL [1]. In this model, tuples have 
timestamps, and there is no ordering between tuples with identical 
timestamps. Tuples with the same timestamp value are said to be 
simultaneous. The processing follows a time-driven model: the 
value of a window is computed at each timestamp by evaluating 
the history of its input streams as of that timestamp. Furthermore, 
all processing at a given timestamp happens instantaneously. 
Thus, all derived tuples also get labeled with the same timestamp 
value.  In this way, each relation has a value as of each 
timestamp. 

The StreamBase Model 
In the StreamBase model, tuples also have timestamps, some of 
which might be identical. The conceptual execution, however, 
assigns an internal rank to tuples based on their arrival order to 
the system and ensures that an input tuple, as well as all tuples 
derived from its processing, are processed as far as possible 
before another input tuple with a higher rank. Unlike the Oracle 
processing model, which is time-driven, the StreamBase model is 
tuple-driven: each relation (logically) has a value as of each tuple. 
This value is obtained by evaluating the window on the history of 
its input stream(s) as of that tuple. 
It is important to note that despite StreamBase’s tuple-at-a-time 
execution model, the values of relations need not change on every 
tuple. In fact, for some window definitions (e.g., time-based 
windows), the window contents will in general not change on the 
arrival of each tuple. A time-based window will only change 
when it has collected all the tuples within the next timestamp 
range. 

2.2 Linear-Road Example 
In this section, we will discuss a few queries that are based on the 
Linear Road Benchmark (LRB) [3].  We show how the current 
Oracle and StreamBase models each fall short on some of these 
queries. The purpose of this section is to introduce some of the 
shortcomings of the two models that we study here. Section 3 will 
look at these issues in more depth. Here and in the remainder of 
the paper, we take some liberties with the exact syntax of the two 
languages, but this should be clear from the context. 

A position report in LRB has the form: 
  (Type, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos). 
For ease of discussion, we use an abbreviated version as follows: 

(VID, Spd; Time) 
Here:  

• Time (0 . . . 10799) is a timestamp identifying the time at 
which the position report was emitted,  

• VID (0 . . . MAXINT) is an integer vehicle identifier 
identifying the vehicle that emitted the position report, and 

• Spd (0 . . . 100) is an integer reflecting the speed of the 
vehicle (in MPH). 

Scenario 

Let S be the stream of car position reports (as in LRB). Below we 
show a sample of this data for two time units. 

S (VID, Spd; Time) = (1,50;1) (2,50;1) 
                                                   (1,50;2) (2,50;2) (3,20;2) 

 

Neither time-basis nor tuple-basis works 
We would like to find, for each input report on stream S, the 
average speed of all cars as of the current timestamp.  Let P1 be 
that stream.  
Since we want a result every time a new tuple arrives to the 
system, we expect 5 results on the above data.  Computing the 
average speed (as of each arrival) will drive us to use a row-based 
window defined as S[rows 1] as in  

P1 = ISTREAM (SELECT avg (Spd) as AvgSpd, Time 
                      FROM S[rows 1]) 

which will produce different results for P1 with the two original 
models: 
   Oracle 
            P1 (AvgSpd; Time) = (50;1) (20;2) 
  StreamBase 
            P1 (AvgSpd; Time) = (50;1) (50;1) (50;2) (50;2) (20;2) 
Notice that both of these answers are wrong. Oracle does not 
produce 5 answers because it is forced to evaluate by time. 
StreamBase produces 5 values, but the “rows 1” window will not 
allow us to group the tuples by time unit. 

Tuple-basis doesn’t work; Time-basis works 
On the other hand, suppose the query wants to report an answer 
for each time-interval, both languages will define a window as 
S[range 1] as in 

            P1 = ISTREAM (SELECT avg (Spd) as AvgSpd, Time 
           FROM S[range 1]) 

which will produce P1 as: 
P1 (AvgSpd; Time) = (50;1) (40;2) 

Further, suppose that we want a stream of the total number of cars 
on the road for each time interval. The query that achieves this is 

P2 = ISTREAM (SELECT count(distinct (VID)) as Count, Time
               FROM S[range 1]) 
which produces: 

P2 (Count; Time) = (2;1) (3;2) 
Now, we want to correlate these two derived streams to detect the 
event at which the average speed is below 45 and the total number 
of cars is two or more. This requires a JOIN of P1 and P2 as 
follows: 

Q = ISTREAM (SELECT * 
     FROM P1[range 1] as SpdReport, P2[range 1] as NumCars 
     WHERE SpdReport.AvgSpd< 45 AND NumCars.Count >= 2) 
 
Q will produce different results in each of the two models.  Oracle 
joins the results across time intervals giving us the following 
result: 

Q (AvgSpd, Count; Time) = (40,3; 2) 



Because StreamBase serializes all tuples and relies on this total 
order, there exists an arrival order (as given in the earlier 
definition of S) such that it will return: 

Q (AvgSpd, Count; Time) = (40,2; 2) (40,3; 2) 
The first tuple in this result is spurious since the speed of 40 and 
the count of 2 never co-existed. In other words, the implied 
simultaneity is not expressible. 

Tuple-basis works; Time-basis doesn’t 
Assume you want a report of the average speed of the last two 
cars that you have heard from (independently of time).  
StreamBase can do this trivially with the following query: 

Q=ISTREAM (SELECT avg(Spd) as AvgSpd 
  FROM S[rows 2]) 
For the same query, Oracle will again produce only two answers, 
one for each timestamp: 

Q (AvgSpd; Time) = (50;1) (35;2) 
Furthermore, the third report (1,50;2) is ignored entirely in these 
answers since the window of size two at time = 2 skips over it.  
This is an example of the “evaporating tuples” problem which 
will be explained in greater detail in what follows. 

3. DIFFERENCES BETWEEN MODELS 
While there are many differences between the two languages, we 
will initially restrict our attention to those that revolve around the 
notion of time, tuple ordering, window evaluation, and the 
interplay among these concepts. To highlight the differences 
between the two models, we use some simple examples.  
We assume in the examples that tuples have a special attribute 
called “time” whose value is assigned by the system. 
Thus our tuples have the following schema: 

(value; time) 
We will consider a stream S with the above schema and (possibly 
sliding) row-based and range-based window queries. 
Let us now point out some of the differences between the two 
models and discuss the implications of these differences. 

Difference 1: Change of Window State 

Example 1: Identical Results Without Simultaneity 
As a first example, consider the following stream: 

S1(value; time) = (10;1)  (20;2)  (30;3)  (40;4) 
Consider the following query: 

ISTREAM (SELECT * FROM S [rows 1]) 
In both the Oracle model and the StreamBase model, this query 
will return the following result: 

(10;1)  (20;2)  (30;3)  (40;4) 
However, consider the following stream which contains two 
tuples with the same timestamp time=1. 

Example 2: Difference in Window State Change With 
Simultaneous Tuples 

S2(value;time) = (10;1)  (20;1)  (30;3)  (40;4) 

ISTREAM (SELECT * FROM S2 [rows 1]) 

In the Oracle Model, the state of a window always changes at 
timestamp boundaries. When time=1, one of the two tuples with 
timestamp 1 will be picked non-deterministically. Thus the result 
will be one of the following two streams: 

(10;1)  (30;3)  (40;4) or (20;1)  (30;3)  (40;4) 
The reason that one of the two tuples with time=1 seems to 
“evaporate” is that the two tuples with time=1 arrive 
simultaneously, since they have the same timestamp, and thus no 
further temporal distinction is possible between them. Windows 
get re-evaluated only when timestamps change. 
In the StreamBase Model, the state of the window changes 
whenever a new tuple arrives. Thus, the output of the query in 
Example 2 in the StreamBase model would be 

(10;1)  (20;1)  (30;3)  (40;4) 
We would like to emphasize that both models of window state 
change are meaningful and useful, and it would be best left up to 
the user to be able to choose when she would like the state of a 
window query to change.  

Difference 2: Temporal Resolution 
Both the Oracle and the StreamBase models have temporal 
resolution at the level of a timestamp. The StreamBase model also 
provides one refinement of timestamp by totally ordering all 
tuples in the system. Thus, while in the Oracle model all tuples 
arriving at a given timestamp are considered unordered, in the 
StreamBase model, there exists a total ordering between these 
tuples (which, for example, may be the order of tuple arrival). 
To illustrate this difference, consider two streams that we would 
like to join. Due to the arrival order (call this the rank) of tuples, 
we have an explicit order between these tuples, but we cannot 
exploit this order in the semantics of the query. Let us illustrate 
this issue in Example 3. 

Example 3: Difference in Order Beyond Timestamps 
S2(value; time) = (10;1)   (20;1) 
S3(value; time) = (100;1)  (200;1) 

Now consider the following query: 

ISTREAM (SELECT * FROM S2[rows 1], S3[rows 1]) 
In the Oracle Model, the output is one of the following tuples, 
without being able to consider the order across streams: 

(10,100;1) 
(20,100;1) 
(10,200;1) 
(20,200;1) 

In the StreamBase model, we have to consider the arrival order to 
determine the output of this query. We give a few example arrival 
orders (among the 4! possible arrival orders) and their associated 
outputs.  Recall that in StreamBase, the [rows 1] windows always 
contain the last arriving tuple in each stream. 
         Arrival order   Output 
(10;1) (20;1) (100;1) (200;1)      (20,100;1)  (20,200;1) 
(20;1) (10;1) (100;1) (200;1)      (10,100;1)  (10,200;1) 
(20;1) (100;1) (200;1) (10;1)      (20,100;1)(20,200;1) (10,200;1) 
 



While it may seem that the choice of the highest resolution 
possible (e.g., at the level of a tuple) is always preferable, this is 
not always the case. Temporal ordering is only useful as long as 
there is semantic meaning to it. For example, the notion of a total 
order may be semantically meaningful as a refinement of a 
timestamp when tuples enter the system and in other special 
cases; however, in general it is not always clear what assignment 
of unique ranks to downstream tuples to use. Let us illustrate this 
issue through two examples 

Example 4: No Semantically Meaningful Ordering Across 
Streams 
S4(value;time)=(10;1)  (20,2)  (30;3)  (40;4) 

S4´(value;time)=ISTREAM (SELECT * FROM S4 [rows 1]) 

S4˝(value;time)=ISTREAM (SELECT * FROM S4 [rows 1]) 
 
Now what (total) order should there exist between the tuples in 
S4´ and S4˝, in particular in comparison to each other?  Should 
the tuples in S4΄ obtain the lower rank since the definition of S4´ 
comes earlier in the DDL than the definition of Stream S4˝? There 
does not seem to be a principled approach with a clean semantic 
meaning of order in this setting. 
The inherent problems of always requiring a total order can also 
be seen in the following example. 

Example 5. No Semantically Meaningful Ordering When 
Joining with Static Relations 

S5(value; time) = (10;1) (10;2) 
R(value) = {(10), (10)} 

ISTREAM (SELECT *  
                     FROM S5[rows 1] AS W, R  
                     WHERE W.value = R.value) 
 

In this query, each of the tuples in S5 joins with two tuples from 
the static relation R. Now what order should exist between the 
two new tuples? Note that if we were to enforce a total order it 
would lose its semantic meaning in the output stream; there is still 
order up to the “equivalence class” in which each of the two 
output tuples reside, but there is no order between these two 
tuples. Thus, always requiring a total order between all tuples is 
also not an acceptable solution. 

Example 6. Orders Between Total Order and Timestamp 
Order 
There is one further issue to consider that we will also illustrate 
through an example. Consider the following stream with attributes 
“value” and “batch” in addition to the mandatory attribute “time”. 
Let us assume that the semantics of batch are that batch is 
consistent with time: If t.time < t΄.time then t.batch < t΄.batch. 
Consider the following stream S6 with the window query below: 
S6(value,batch;time) = (10,1;1)  (20,1;1)  (30,2;1)  (40,2;1) 

ISTREAM(  
SELECT * 
FROM S6[range 1]) 
 

If we would consider S6 as a total order, then the result would 
contain the four tuples from S6. However, “batch” is a 

semantically meaningful attribute as a pseudo-refinement of time, 
and thus a user may want to see the state of the window only 
change whenever a new batch of tuples arrives or if the window 
slides. None of the two existing models can capture this 
semantics; tuples do not get added to the window one by one as in 
the StreamBase model nor do they get added a timestamp at a 
time as in the Oracle model. 
These examples illustrate that we need to relax simultaneity in 
order to be able to expose inherent, semantically meaningful order 
between tuples with the same timestamp. We also need to be able 
to define when a window gets evaluated in order to avoid the 
evaporating tuples problem. Next, we will describe a proposal 
based on equivalence classes that we believe strikes a fine balance 
between these new demands and the general concerns of staying 
conceptually clean and keeping a simple processing model. 

4. PROPOSED MODEL 
We now discuss the key components of the proposed convergence 
language by giving a precise description of the model and 
illustrating it with examples. 
The key insight is that evaluation of results in both systems is 
triggered by the arrival of a batch of tuples.  In the Oracle model 
the batch is defined by like values of a timestamp.  In the 
StreamBase model, batches are always of size one tuple.  By 
controlling the batching of tuples and the ordering between these 
batches, we can simulate both models plus many alternatives that 
neither model can capture. 
In what follows, we assume that the reader is familiar with 
elementary group theory, in particular with the notion of an 
equivalence relation and the induced quotient set and the notion 
of a partial order.  
We say that an equivalence relation ~1 is a refinement of an 
equivalence relation ~2 if whenever x~1y holds then x~2y also 
holds (~1 makes the equivalence classes of ~2 “finer”). We say 
that a partial order <1 is a refinement of a partial order <2 if 
whenever x<2y holds, x<1y also holds. 

4.1 Streams  
Streams and Timestamps 
A stream S has tuples T = (s;t), where t is the timestamp of the 
tuple. The timestamp is from a discrete domain TIME with a total 
order <t. 
There is an unbounded but finite number of tuples with the same 
timestamp. The timestamps induce an equivalence relation ~t over 
the tuples in S such that two tuples are in the same equivalence 
class if they have the same timestamp. Formally, for tuples T1, 
T2, T1~tT2 if T1.t = T2.t; we will also write [T1]t=[T2]t where 
[T1]t  denotes the equivalence class of tuple T1 with respect to the 
equivalence relation ~t. We will call this equivalence relation the 
timestamp equivalence relation. We call tuples with the same 
timestamp timestamp-simultaneous. 
The total order on the timestamp domain induces a total order < in 
the quotient set of the equivalence relation ~t: We define that 
[T1]t < [T2]t if T1.t < T2.t. This induces a partial order <t on 
tuples from stream S: For any two tuples T1 and T2 from S, we 
define that T1 <t T2 if [T1]t < [T2]t. (Note that we have 
overloaded the symbol < to denote different orders, but its 
meaning is clear from the context.) 



 
Example: Consider the stream S(value; time) with tuples (a;1), 
(b;2), (c;2), and (d,4) shown in Figure 1. Tuples (b;2) and (c;2) 
are timestamp-simultaneous, it holds that [(b;2)]t=[(c;2)]t. 
Timestamps are essential to any steam processing model. 
However, as the examples in Sections 2 and 3 demonstrated, we 
need to be able to further distinguish between tuples with the 
same timestamp. We do this by refining the partial order <t 
between tuples that is induced by the timestamps even further 
through the introduction of batches. 

(a;1)

(b;2)

(c;2)
(d;4)

= equivalence
classes

 
Figure 1 – A Stream with the Timestamp Equivalence 

Relation 
Batches 
In addition to the timestamp equivalence relation, a stream S has 
an associated batch equivalence relation ~S that is a refinement of 
the timestamp equivalence relation ~t. We will call a set of tuples 
that is equivalent with respect to ~S a batch of tuples and we will 
say that two tuples t1 and t2 such that t1~st2 are batch-
simultaneous. There also exists a total order <S in the quotient set 
of the equivalence relation ~S with the property that the induced 
partial order on the tuples of S is a refinement of the partial order 
induced by the timestamps. Thus <S does not only subsume the 
timestamp order <t, it also defines a partial order on all the 
timestamp-simultaneous tuples at time t; we will use <S to denote 
both the partial order between tuples and the total order in the 
quotient set of  ~S; its usage will be clear from the context. 
We will number the batches of a stream with (t,i), where t is the 
timestamp of the tuples in the batch and i is the number of the 
batch within the timestamp. Thus, at time t, the first batch is 
numbered (t,1), the second batch is numbered (t,2) and so on. 
Note that this ordering is unique since there is a total order on all 
the batches on a single stream. We refer to this batch number of a 
tuple T as BATCHS(T). The timestamp of a tuple is immutable, 
but as we will see later, tuples within a timestamp are batched and 
how tuples are assigned to batches can be changed through the 
query language. Note that we have so far only defined batches for 
a single stream; we will extend this notion in Section 4.2. 
With batches, two tuples Ti and Tj from the same stream S must 
have one of the following ordering relationships: 
1. Ti <t Tj: Ti precedes Tj (or Tj follows Ti) in the timestamp 
order 
2. Ti ~t Tj: Ti has the same timestamp as Tj, they are timestamp-
equivalent. Now we either have:  
   2.1: Ti ~S Tj: Ti and Tj are timestamp-simultaneous and batch-
simultaneous 
   2.2: (Ti <S Tj) or (Tj <S Ti): Ti and Tj are not batch-
simultaneous, and the batch-order on stream S induces a total 
order between Ti and Tj. 

Example (Continued.) 

As an example consider the stream S(value; time) = (a;1) <S 
{(b;2), (c;2)} <S {(d;2), (e;2)} <S (f;4) shown in Figure 2. There 
exist four tuples with timestamp=2, they belong to two batches. 
The first batch numbered (2,1) consists of tuples (b;2) and (c;2) 
and the second batch numbered (2,2) consists of tuples (d;2) and 
(e;2). 

(a;1)

(b;2)

(c;2)

(f;4)

(d;2)

(e;2)

 
Figure 2 - Multiple Equivalence Classes per Timestamp 

 

4.2 Stream Groups 
So far, we have only discussed order within a single stream. The 
timestamp equivalence relation and its associated total order in 
the quotient set of the equivalence relation can be extended to a 
set of streams in a straightforward way since we can always 
compare the timestamps of any two tuples T1 and T2 regardless 
of what stream they come from. Thus, for any two tuples T1 and 
T2, we can always determine that one of the following two 
conditions holds: 
1. T1 ~t T2: T1 and T2 have the same timestamp and thus are 
timestamp-equivalent. 
2. (T1 <t T2) or (T2 <t T1): Either T1 has a smaller timestamp 
than T2 or vice versa. 
However, such an extension is non-trivial for batches since 
batches within the same timestamp across streams cannot be 
compared. We address this issue by introducing the novel concept 
of a stream group. 

Stream Groups 
A stream group G={S1,S2,…,Sk} is a set of streams with an 
associated equivalence relation ~G and a total order <G in the 
quotient set of this equivalence relation. A stream group is 
consistent if for each stream S in G the following holds: 

For all pairs of tuples T1, T2 from the same stream S 
such that T1 and T2 have the same timestamp t: 
T1  ~S T2 if and only if  T1 ~G T2 and 
T1 <S T2 if and only if T1 <G T2. 

In other words, the equivalence relation ~G and the total order in 
the quotient set <G across all streams is consistent with the 
equivalence relations and total orders in the quotient set of each 
individual stream S in G. We will only consider consistent stream 
groups in the remainder of this paper. 
Thus a stream group also induces a total order on the batches, and 
we can assign tuples within a timestamp again a unique batch 
number; we denote this batch number of a tuple T within a stream 
group G by BATCHG(T). 

4.3 Streams to Relations and Back 
4.3.1 Batch-Varying Relations 
Our notion of batches defines batch-varying relations. In 
particular, the granularity of relation states is defined as 
individual batches instead of time or individual tuples. Thus, a 



window defined on a stream S will have a new state for each 
batch of S and each window state is simultaneous with the 
corresponding batch. This definition naturally generalizes to work 
with stream groups as well, thus allowing us to reason about the 
ordering (or simultaneity) of windows defined on the same stream 
group but on different streams. This is necessary, say, for the 
execution of a join of two windows defined on the same stream 
group. 
Each table also has a value as of a given batch. However, how a 
table maps its progression of states into this domain is not part of 
our language specification.   
4.3.2 Relations to Streams 
We use two basic relation-to-stream operations, ISTREAM 
(Insert Stream) and DSTREAM (Delete Stream). Conceptually, 
ISTREAM captures tuples that are inserted to a relation (such as a 
window) over time, whereas DSTREAM captures the tuples that 
“fall out” of the relation, as used in CQL [1]. While the 
granularity of captures in CQL is a time tick, our capture 
granularity is a batch. Without loss of generality, we define these 
operations on windows as follows: 

• ISTREAM of window W defined on S as of batch bi contains 
a tuple t if t is in W as of batch bi but not as of bj, where bj is 
the batch that immediately precedes bi on S.  

• Similarly, DSTREAM of window W on S as of batch bi 
contains a tuple t if t is in W as of batch bj but not as of bi 
where bj is the batch that immediately precedes bi on S.  

One subtle issue that arises with ISTREAM and DSTREAM 
involves deciding whether two tuples with the same value 
(identical attribute-value pairs) are to be treated as the same or 
not. For example, consider a tuple (a;1) to be inserted into 
window W with state {(a;1), (b;1)}. There are two possible 
semantics one can assume in this case: we can use set-difference 
semantics and treat the two (a;1) tuples as identical. With this 
difference semantics, the ISTREAM of W will not contain the 
new tuple (a;1) as another tuple with the same value already exists 
in W. We can also define an alternative semantics by assuming 
that tuples are inherently different regardless of their values, in 
which case the new tuple will be contained in the ISTREAM. We 
call this latter semantics delta semantics. 
Because these two semantics are applicable and useful in different 
situations, we decide to include both in our proposed language. 
Specifically, we use the keywords DIF and DEL along with 
ISTREAM and DSTREAM to indicate which of the two 
semantics we intend to use. 

4.4 Revising Existing Models 
With this notation, we now revisit the two stream processing 
models that this paper unites. 
The Oracle Model.  
For a stream S the equivalence relation ~S is equal to the 
timestamp equivalence relation ~t, i.e., all tuples with the same 
timestamp are not only timestamp-simultaneous, but also in the 
same batch. Since the quotient set of ~S contains only one batch 
per time, there is no further ordering <S.  
All existing streams form a single stream group with all tuples 
within the same timestamp across all the streams belonging to one 
equivalence class of ~G. Thus there is also no further ordering <G. 
The StreamBase Model. 

In the StreamBase model, the equivalence relation ~S is trivial, 
i.e., it only contains elements of the form (T,T) and thus each 
batch consists of one tuple. Thus, the total order <S orders all the 
tuples with the same timestamp on a single stream. 
In the StreamBase model, all streams together form a single 
stream group G with each tuple again in its own equivalence class 
of ~G and <G defines a total order across all streams between all 
tuples with timestamp t (recall that <G refines <t). Thus in the 
StreamBase model, there is a total order between all tuples in the 
system. 

4.5 Windows 
One of the main constructs in any stream query language is a 
window. Let us now explain how to form windows. Windows 
take as input a stream and result in batch-varying relations. There 
are two fundamental aspects to the semantics of windows. 

• Deciding when a new window state is triggered. 

• Deciding the contents of that window state. 
In our novel model, a window on stream S is triggered whenever 
a new batch of tuples arrives, and thus the relation that is created 
from the stream varies with each batch of arriving tuples. Let us 
make this notion a bit more formal and introduce the two basic 
types of windows that every stream processing language supports 
in our new model. 
In this section, we always assume that the window constructs are 
part of a larger query, and that all the streams (and time-varying 
relations) are part of the same stream group G. We denote the 
equivalence relation that is associated with the temporal group G 
simply by < since G is clear from the context. 

4.5.1 Row-based windows 
A row-based window is specified on a stream S as 

S [rows n] 
The output is a relation that varies with each batch of tuples in the 
input stream. More formally, R(t,i) consists of the n tuples of S 
with the largest batch numbers that are ≤ (t,i). If this set consists 
of more than n tuples, then we non-deterministically choose 
among the set of tuples with the smallest batch number in order to 
reduce the number of tuples to n. Formally: 
Rin(t,i) = {(s,t´) in S : BATCHG(s,t´) ≤ (t,i) and 
                         |{(r,t˝) in S :  BATCHG(r,t˝) ≤ BATCHG(t,i) 
                                        and BATCHG(r,t´)>BATCH(s,t´)|  < n}. 
Let (t’,j) be the smallest batch number among all tuples in 
Rin(t,i). Then we choose n-|Rin(t,i)| additional tuples from the 
batch before (t,j’); R(t,i) consists of Rin(t,i) union these additional 
tuples. 
When n=infinity, then R(t,i) consists of all tuples in S up to and 
including batch (t,i). 

Example. As an example of how row-based windows work, 
consider the stream that is illustrated in Figure 2.  The states that 
would be created for a window defined as S[rows 2] would be: 
 R(1,1) = {(a;1)} 
 R(2,1) = {(b;2), (c;2)} 
 R(2,2) = {(d;2), (e;2)}   
 R(4,1) = {(d;2), (f;4)} or {(e;2), (f;4)} 



The last result is non-deterministic because, while (f;4) is 
certainly the tuple with the largest timestamp in stream S, the 
second to last tuple could be (d;2) or (e;2) since they are batch-
simultaneous. Note that (b;2) and (c;2) are not considered since 
they belong to an earlier batch even though they have the same 
timestamp as (d;2) and (e;2). (The SPREAD command that we 
introduce in the next section allows us to impose an order 
between these two tuples and thus eliminate the non-
determinism.) 

4.5.2 Range-based windows 
A time-based window is defined as 
S [range T] 
The output is a time-varying relation that varies with each batch 
of tuples. We denote by t the timestamp of the batch-varying 
relation and by i the batch number: 
R(t,i) = {s | (s,t’) in S and BATCHGr(s,t’) <= (t,i) and (t’ >= 
max{t-T,0})} 
When T=0, then R(t,i) consists of all tuples (s;t) with timestamp t 
up and including batch number i. When T=infinity, then R(t,i) 
consists of tuples obtained from all elements in S up to the ith  
batch at timestamp t. 

Example. If we now form a range-based window over the same 
stream (Figure 2) as S[range 2], we get the window states that are 
enumerated below: 
 R(1,1) = {(a;1)} 
 R(2,1) = {(a;1), (b;2), (c;2)} 
 R(2,2) = {(a;1), (b;2), (c;2), (d;2), (e;2)} 
 R(3,1) = {(b;2), (c;2), (d;2), (e;2)}  
 R(4,1) = {(f;4)} 
Note that R(3,1) has the given value because of the absence of a 
batch at time t=3. A window state is generated here for the range-
based window because timestamp 3 exists even if a tuple was not 
generated for that timestamp. 

4.5.3 Partitioned Windows 
A partitioned window is defined as 
S [Partition by A1,...,Ak rows n] 
The output is a batch-varying relation that varies with each batch 
of tuples in the input stream.  
Intuitively, this window logically partitions S into different 
substreams based on equality of attributes A1, A2,…, Ak,  then 
computes row-based windows of size n independently on each 
substream, and finally takes the union of the corresponding 
batches of these windows to produce the output relation. 
This is analogous to the way partitioned windows work in CQL 
[1]; however, unlike in CQL where all partitioned windows get 
evaluated simultaneously at each timestamp, our windows get 
evaluated with the arrival of batches on each window. As such, all 
windows do not necessarily get evaluated simultaneously. We 
omit a formal description due to space constraints. 

4.5.4 Sliding Windows 
Most data models have a means for specifying the way that 
windows move from one state to the next. This is typically 
referred to as a window slide. We incorporate window slides into 

our new model in a very simple way. Batches will still trigger 
new windows, but there will be requirements on the number of 
rows or the number of timestamps that must pass before a new 
window will be allowed to form. We will illustrate this by 
considering row windows and range windows separately. 

Row-based slides 
A row window can slide by some number of tuples as in S[rows 1 
slide 2].  In this case, we are defining a 1-tuple window such that 
there must be at least two tuples since the last window before a 
new window state is formed. 
Consider the following example. Suppose that the stream S is as 
follows with curly brackets indicating batches: 

 
S(value;time) = {(a;1)  (b;1)  (c;1)}  {(d;2) (e;2) (f;2)} 

 {(g;3)} {(h;3)} {(i;4) (j;4)} {(k;4)} 
 
The parentheses indicate batches and the integer values represent 
tuples with the given timestamp. A window defined on stream S 
as S[rows 2 slide 2] would produce the following three states 

[(b;1)  (c;1)] 
[(e;2), (f;2)] 
[(g;3), (h;3)] 
…… 

The first batch of tuples triggers a window and the second and 
third tuple form the first 2-row window.  The window slides and 
as soon as the next batch is seen, the slide condition is satisfied.  
That is, two new tuples have been seen since the last window 
state.  At this point, the second and third tuple from the second 
batch are taken as the next window state. We must see two 
additional batches before the condition of two new tuples is 
satisfied, which explains the third window state. 

Range-based slide 
Here it is still batches that trigger a new window.  The basic form 
for a range-based sliding window on stream S is S[range 2 slide 
2]. Only batches that have timestamps, ts, such that (ts mod 2 = 0) 
will trigger a new window. As an example, consider stream S as 
before. A window defined on S as S[range 2 slide 2] would 
generate the following three states. 

[(a;1)  (b;1)  (c;1) (d;2) (e;2) (f;2)] 
[(g;3) (h;3) (i;4) (j;4)]   
[(g;3) (h;3) (i;4) (j;4) (k;4)]  
 

In the case of a range-based window, we produce new windows as 
long as the window timestamp range is obeyed. Thus, in this 
example, we get two windows for timestamp range 3-4. 

5. MANIPULATING ORDERS 
Given the simple model of streams, stream groups, and windows 
described above, the goal is now to develop mechanisms to create 
and manipulate ordering relationships among the tuples, within 
and across streams. We accomplish this goal through a powerful 
stream-to-stream operator called SPREAD. 
Intuitively, SPREAD allows us to modify the batch equivalence 
relation ~G and the total order between batches <G for a stream 
group G. Let us start by defining the syntax and semantics of 
SPREAD. 



5.1 SPREAD: Syntax and Semantics 
For simplicity of exposition, we first discuss the single-stream 
version of SPREAD that takes a single input stream and produces 
a single output stream. We will then generalize the description to 
multiple streams. We assume without loss of generality that the 
attribute list just consists of a single attribute “Attr”; 
generalization to a list of attributes is straightforward. 

 

5.1.1 Single-Stream SPREAD 
The syntax for the single-input SPREAD is as follows: 

SPREAD InStream [ALL] [ON Attr] OutStream 
There are two flavors of SPREAD, distinguished by the keyword 
ALL. The first flavor ignores existing orders, whereas the second 
retains them. 

SPREAD ALL. SPREAD ALL orders tuples into batches by 
constructing a new batch equivalence relation ~OutStream from the 
stream InStream. Consider two tuples T1 and T2 such that 
T1~tT2, i.e., T1 and T2 are timestamp equivalent in InStream. 
Then the SPREAD above defines the following batch equivalence 
relation: 

T1~OutStreamT2 if [T1]t=[T2]t and T1.Attr = T2.Attr. 
The total order < OutStream is defined as follows: 

[T1]<OutStream[T2] if  
T1 <t T2 or (T1 ~t T2 and  T1.Attr < T2.Attr. 

Thus SPREAD orders the batches within a timestamp by the value 
of column Attr. If T1 and T2 have the same value for Attr, they 
are batch-simultaneous in OutStream. 
Thus, the outcome of SPREAD is independent of any existing 
batch equivalence class on InStream. If no Attr is specified, then 
SPREAD creates a random total order. Note that with SPREAD, 
we can now force a specific total order on tuples in a stream with 
the same timestamp: We simply have to create and maintain an 
attribute, or a list of attributes, whose values are guaranteed to 
have the desired ordering properties for tuples with the same 
timestamp.  In some systems such an attribute will be called a 
rank attribute. 

SPREAD. SPREAD creates a new equivalence relation that is a 
refinement not only of the timestamp equivalence relation but of a 
possibly existing batch equivalence relation on the input stream. 
More formally, SPREAD orders tuples into batches by 
constructing a new batch equivalence relation ~OutStream on the 
stream OutStream that is a refinement of any existing batch 
equivalence relation ~InStream. Consider two tuples T1 and T2 such 
that T1~tT2 and T1~InStream T2, i.e., T1 and T2 are timestamp and 
batch equivalent in Instream. Then we define the batch-
equivalence relation that is induced by the SPREAD command at 
the beginning of this section as follows: 

T1~OutStreamT2 if  
T1~InstreamT2 and T1.Attr = T2.Attr  

The total order < OutStream is defined as follows: 
[T1]<OutStream[T2] if  

[T1] <InStream [T2] or 
[T1] ~InStream [T2] and T1.Attr < T2.Attr 

In other words, if two tuples T1 and T2 are already batch-ordered 
(T1 < T2 or T2 < T1) in InStream, SPREAD does not have any 
affect on the relationship between those tuples. However, 
SPREAD further orders batch-simultaneous tuples in InStream 
based on Attr. 

Propagating ordering information from the inputs to outputs: 
We use a simple rule to infer the order information for the derived 
tuples: all tuples that get produced as the result of processing a 
given batch are simultaneous with that batch. Notice that the basic 
CQL time-propagation model is a specific instance of this rule.  
Figure 3 shows three examples of the use of SPREAD on a single 
stream. In the top two cases, the tuples are SPREAD on the basis 
of an attribute value. The bottom SPREAD does not specify any 
attribute, indicating that any total ordering of the tuples is 
acceptable. 

5.1.2 Multi-Stream SPREAD 
Now let’s consider multiple input-output streams. 
SPREAD InStream_L [ALL] [ON Attr] OutStream_L 

(a,1;1)
(b,2;1)
(b,3;1)

SPREAD S ON rank

(a,1;1) (b,3;1)(b,2;1)

(a,1;1)
(b,2;1)
(b,3;1)

SPREAD S ON value

(a,1;1) (b,2;1)
(b,3;1)

(a,1,1)
(b,2;1)
(b,3;1)

SPREAD S

(b,2;1) (b,3;1)(a,1;1)

S = (value, rank; time)

S = (value, rank; time)

S = (value, rank; time)

Note: any total
ordering is OK

Figure 3 - Single Input Spread Examples 

(a,1;1)(a,1;1)
(b,2;1) SPREAD S1, S2 ON rank

(c,3;1)
(b,4;1)

(b,2;1)

(c,3;1) (b,4;1)

(a,1;1)
(b,2;1) SPREAD S1, S2 ON value

(c,3;1)
(b,4;1)

(a,1;1) (b,2;1)

(b,4;1) (c,3;1)

(a,1;1)
(b,2;1) SPREAD S1, S2 

(c,3;1)
(b,4;1)

(b,2;1) (b,2;1)

(c,3;1) (b,4;1)

S1 = (value, rank; time)

S2 = (value, rank; time)

S1 = (value, rank; time)

S2 = (value, rank; time)

S1 = (value, rank; time)

S2 = (value, rank; time)
Note: any total
ordering is OK   

 
Figure 4 - Multi-Input Spread Examples 

 



SPREAD ALL takes the tuples that have the same timestamp on 
all input streams specified in InStream_L, reorders them 
according to Attr as described above, and then places them on the 
corresponding output streams specified by OutStream_L. If no 
Attr is specified, then the result is a random total order across all 
output streams.   
SPREAD retains the existing batch equivalence relation within 
the stream group and refines it in the same way as described in 
Section 5.1.1. Note that it is imperative that all input streams 
belong to the same stream group as otherwise there may not exist 
a total order among the batches such that SPREAD can refine this 
total order. 
Figure 4 shows three examples of the use of SPREAD on two 
input streams. In the top two cases, the tuples are SPREAD on the 
basis of an attribute value. Note here that multi-input SPREAD 
creates new equivalence classes and orders among tuples on 
different streams. The bottom SPREAD does not specify any 
attribute, indicating that any total ordering of the tuples across the 
two streams is acceptable. 

5.2 A JOIN Example using SPREAD 
Consider two streams S1 and S2 as illustrated in Figure 5.  
Suppose that we first spread these two streams using SPREAD 
S1, S2 ON rank INTO S1a, S2a and then join S1a and S2a with 
one-tuple row-based windows.  The result is shown at the bottom 
of Figure 5. 
As shown above, we now generate window states as of a batch.  
Similarly, results are also generated as of a batch. 
As a further example of multi-input SPREAD and JOIN, consider 
the same input streams and a SPREAD S1, S2 ON time INTO 
S1a, S2a with the same JOIN command as before.  The result can 
be seen at the bottom of Figure 6. 

6. DIFFERENCES REVISITED 
In Section 3, we saw examples of specific problems that occur 
with the Oracle and StreamBase languages. The main issue is that 
neither of the languages has sufficient expressive power to affect 
the order in which tuples are processed and results are generated. 
In particular, the Oracle language suffers from a coarse notion of 
simultaneity, which is exclusively driven by time and cannot 

exploit additional ordering information. On the other hand, the 
StreamBase language has no notion of simultaneity and thus has 
to “artificially” introduce order at times.  
The new model described above does not suffer from these 
problems for two reasons. First, there is inherent support for 
simultaneity and partial order. Second, the SPREAD operator can 
be used to introduce order and simultaneity as needed.  
We now revisit some of the previous examples to illustrate the 
utility of SPREAD in addressing the aforementioned issues.  
First, let’s recall the query from Example 2, which had the 
evaporating tuples problem, and rewrite it using the partial order 
notation.  
S2(value;time) = {(10;1), (20;1)} < {(30;3)} < {(40;4)} 

ISTREAM (SELECT * FROM S2 [rows 1]) 
The evaporating tuples problem arose here because of the 
simultaneity of the first two tuples. In the new model, this issue 
can be easily addressed by:  

SPREAD S2 
which yields as a possibility the following output stream 
S2 = {(10;1)} < {(20;1)} < {(30;3)} < {(40;4)} 
This is also the output we get as the result of the query. While this 
example introduced order arbitrarily, it is also possible to leverage 
additional ordering information not reflected by time. Let’s 
rewrite Example 3 with the modification that tuples now have an 
additional “rank” attribute whose value reflects the tuple arrival 
order: 
S2(value, rank; time) = {(10,1;1),(20,3;1)} 
S3(value, rank; time) = {(100,2;1),(200,4;1)} 

ISTREAM(SELECT * FROM S2[rows 1], S3[rows 1]) 
(Note that both the within-stream and the cross-stream order of 
the tuples is undefined.) 
Here we can break the simultaneity and produce a total order 
consistent with the rank values by applying “SPREAD ALL S1, 
S2 on rank into S1', S2' ”, that leads to the following output 
streams: 
S2'(value, rank; time) = {(10,1;1)}1 < {(20,3;1)}3 
S3"(value, rank; time) = {(100,2;1)}2 < {(200,4;1)}4 

(a,1;1)
(b,2;1)

SPREAD S1, S2 ON time INTO S1a, S2a
(c,3;1)
(b,4;1)

(a,1;1)
(b,2;1)

(c,3;1)
(b,4;1)

S1

S2

SELECT * FROM S1a[rows 1], S2a[rows 1]

S1a

S2a

b1

Result = {[b,2,1,b,4,1]}, @ batch b1
  

Figure 6 – Same Join, Different SPREAD 
 

(a,1;1)
(b,2;1)

(c,3;1)
(b,4;1)

(a,1;1) (b,2;1)

(c,3;1) (b,4;1)

SELECT * FROM S1a[rows 1], S2a[rows 1]

Result = {  }, @ batch b1
{  }, @ batch b2
{[b,2,1,c,3,1]}, @ batch b3
{[b,2,1,b,4,1]} @ batch b4

b1 b4

SPREAD S1, S2 ON rank INTO S1a, S2a

S1

S2

S1a

S2a

b2 b3

Figure 5 – A JOIN Example Using SPREAD 



(The numbers in superscripts indicate the cross-stream order of 
the batches.) The output of the query is as follows: 
{(10,1,100,2;1)} < {(20,3,100,2;1)} < {(20,3,200,4;1)} 
Examples 4 and 5 illustrated the non-intuitive implications of a 
model that always requires a total order. Since our proposal 
allows and properly propagates simultaneity, it does the “right 
thing” here. That is, in Example 4, the simultaneity of tuples 
across S4’ and S4’’ are automatically maintained, and in Example 
5, the two new tuples created for each S5 tuple are simultaneous. 
In both cases, the new model obtains the desired behavior by 
default without any explicit SPREAD operations. 
Finally, let us consider Example 6 again using the new notation: 
S6(value, batch; time) = {(10,1;1), (20,1;1), (30,2;1), (40,2;1)} 

ISTREAM(SELECT* 
                   FROM S6[range 1] ) 

Here if we apply SPREAD S6 on batch, the updated S6 becomes  
S6 = {(10,1;1), (20,1;1)} < {(30,2;1), (40,2;1)} 
Here, the tuples with the same batch values are placed in the same 
equivalence class and are thus batch-simultaneous. 

7. INTRUSION DETECTION EXAMPLE 
We now present a more sophisticated example that exercises the 
various constructs that we have introduced so far. 

Scenario 
We consider a simplified scheme for network intrusion detection: 
the goal is to track those external Internet hosts that initiate 
connections to hosts within a protected network to identify if they 
are potentially engaging in port-scanning activities. Port scans are 
one common way in which an attacker finds vulnerabilities to 
exploit, because it is a way to find out if a particular service (such 
as a TCP port) is active or not on a host. 

In this case, the input stream, CStream, is a stream of connection 
summaries, where a connection has a source IP address (srcIP), 
destination IP address, destination port number, and a Status field 
(status) indicating whether the connection succeeded or failed. 
Further, each connection has an arrival number 
(arrival_number), a unique sequence number applied by the 
system, as well as a field (time) that represents the connection 
attempt time on the destination system. 
A “scanner alert” occurs when there are X failed connections out 
of Y successive attempts. Our objective is to raise a high-level 
alert if, for a specific srcIp, the number of scanner-alerts in the 
last minute is greater than the number of scanner-alerts in the 
previous minute. 

Query 
The connection stream, CStream, might contain many 
simultaneous connection attempts. Thus, we first need to make 
sure that we process each attempt; in particular, we need to break 
the simultaneity to avoid the “evaporating tuples” problem 
studied earlier. We can accomplish this by spreading CStream as 
follows: 
SPREAD CStream ON arrival_number INTO COrderedStream; 
 
The new stream, COrderedStream, has the exact same tuples as 
CStream, but its tuples are totally ordered on the basis of their 

arrival orders. As such no two tuples on COrderedStream are 
simultaneous. 
We now define a new stream, ScannerAlertStream, which 
contains the sources producing scanner-alerts we described above: 
ScannerAlertStream =  
ISTREAM (SELECT  srcIp 

     FROM   COrderedStream[Partition by srcIp rows Y] 
     WHERE  status = 'FAILURE' 
     GROUP BY srcIP  
     HAVING count(*) > X) 

 
Now, we need to compute the number of scanner-alerts in the last 
minute and the last two minutes. Since we need only one entry 
per minute per srcIp (updated every minute), we first need to 
"restore" simultaneity back again on the ScannerAlertStream, 
which we can achieve by spreading on time as follows: 

SPREAD ALL ScannerAlertStream ON time  
INTO ScannerAlertSimStream; 

 
On this stream, we define two relations: Relation MinuteCount:   

 
SELECT srcIp,  count(*) as min_count  
FROM    ScannerAlertSimStream[range 1 minute slide 1 minute] 
GROUP-BY srcIp; 
 
Relation TwoMinuteCount: 
 
SELECT srcIp,  count(*) as two_min_count 
FROM ScannerAlertSimStream[range 2 minutes slide 1 minute] 
GROUP-BY srcIp; 
 
Notice that by virtue of the automatic propagation of ordering 
information from the input streams to the derived streams, the 
states of MinuteCount and TwoMinuteCount are now updated 
simultaneously every minute. Finally, the desired output stream, 
AlertStream, can be defined as: 

 
ISTREAM(SELECT srcIp 

     FROM MinuteCount as M, TwoMinuteCount  as T 
                     WHERE M.srcIp = T.srcIp and 
                                  2*M.min_count > T.two_min_count) 
 
This example illustrates the use of SPREAD to break and recover 
simultaneity as well as the propagation of ordering/simultaneity 
information across nested queries. 

8. A BRIEF NOTE ON IMPLEMENTATION 
The main result reported here is on stream data models and 
semantics; however, we take this opportunity to say a few words 
about implementation and extensibility issues. 
As in either of the original languages, relations (incl. windows) 
take on a progression of new states, each one of which will 
potentially trigger evaluation of the query.  Once a new relation 
state in a given query has been determined, the query is evaluated 
exactly as it would be in SQL, thus, enabling all standard 
optimization techniques.  This is all still true in this new model 
with the caveat that relation states are produced as the result of 
batches. 



The batches will be determined by the use of SPREAD. Thus we 
might ask how we implement SPREAD. Of course, this is up to 
each vendor that adopts this notion and would likely be 
proprietary. A naïve implementation would collect all the tuples 
for a given timestamp and would apply the sorting criteria implied 
by the SPREAD to create the new batches.  An optimization 
could occur if we knew that all values (within a timestamp) of the 
SPREAD attribute have arrived, allowing us to create a batch 
early. This could be accomplished through the use of heartbeat 
tuples, much as this technique is used in time-based processing. 
We also note that our proposal does not require changes to the 
existing relational operators or preclude adding new ones. This is 
a direct result of the decoupling between the window semantics 
and operator semantics. SPREAD only affects the former; as 
such, standard relational operators as well as new UDFs that work 
on relations can be immediately used in our framework.  

9. RELATED WORK 
There have been many stream query languages proposed over the 
last several years [1, 7, 8, 10, 11, 13]. The goal of this section is 
to describe the evaluation models of other stream query engines 
(both academic and commercial), and to report whether they more 
closely resemble the Streambase model (tuple-driven) or the 
Oracle model (time-driven).   
It is somewhat surprising that it is not common to find language 
descriptions in this arena that explicitly and precisely discuss the 
evaluation rules directly. As a result, some of what follows is 
based on our best guess.  We have learned through the activity 
that we report here how subtle evaluation issues can be and how 
hard it is to find such a model that satisfies multiple needs.  We 
hope that this paper will encourage others to evaluate their own 
systems in this light. 
In many cases, scheduling policies were discussed (e.g., [5, 9]), 
but it is important to note that scheduling policies are orthogonal 
to the evaluation model. For example, [9] discusses a batch 
scheduling approach that schedules query evaluation when 
batches of input tuples arrive, but this is an optimization meant to 
preserve the semantics of the tuple-driven model.  Similarly, one 
could imagine that a scheduler for a time-driven model could 
schedule computation with the arrival of every tuple, taking 
advantage of lulls between tuple arrivals to partially generate 
results that will be emitted with the next clock tick. 
Both tuple-driven and time-driven evaluation models have 
historical precedents set prior to the emergence of stream 
processing systems.  The tuple-driven model is the basis for view 
maintenance [18]; any change in a base table must be reflected in 
a dependent view for the view to be accurate.  Thus, view 
maintenance occurs in response to the event of a tuple being 
inserted into, deleted from or changed within a base table.  The 
implementation of view maintenance can be lazy, but this is an 
optimization and does not change the semantics of what is 
considered to be a correct view.  Similarly, database integrity 
constraints (which can be thought of as views that return Boolean 
responses to updates (allow or disallow)) and triggers have an 
execution model that is tuple-based.  On the other hand, time-
driven evaluation models evolved from early work in continuous 
query processing (e.g., Tapestry [21]). A parameter of these 
systems was a time interval that determined the frequency of 
generating incremental query results. 

According to the CCL user manual, [8], CCL supports both tuple-
driven and time-driven evaluation models. This is similar to the 
“big switch” model that we mentioned earlier. The default setting 
is tuple-driven evaluation. Thus, the CCL query, 

 INSERT INTO R1 
 SELECT sum (value) as Sum 
 FROM s 
 KEEP 3 rows 
which windows stream S with a tuple-based window of size 3, is 
equivalent to the StreamBase query 

 R1 = ISTREAM (SELECT sum (value) as Sum 
                FROM S [rows 3]) 
in that it allows windows to include tuples with different 
timestamps. For example, let 

S (value; time) = (1;1),(2;1),(3;1),(4;1),(5;2),(6;2),(7;3), … 
be the input stream such that time is the system-provided 
timestamp (expressed as a measure of seconds). Given this 
stream, both Coral8 and StreamBase queries would return the 
stream, 

R1(Sum; time) = (6;1), (9;1), (12;2), (15;2), (18;3) … 
To support time-driven evaluation, CCL provides an optional 
OUTPUT clause that suppresses outputs except at specified 
periods. For example, the CCL query, 

 INSERT INTO R2 
 SELECT sum (value) AS v 
 FROM S 
 KEEP 3 rows 
 OUTPUT EVERY 1 second 
would return results only when an input tuple’s timestamp 
reported that a second had “ticked” since the last output. In this 
case, the CCL query would return the stream, 
 R2(Sum; time) = (9;1), (15;2), … 
as this result indicates the sum of the last 3 values seen when 
tuple (5;2) arrives (9 = 2+3+4) and when tuple (7;3) arrives (15 = 
4+5+6).   
ESL, a part of the StreamMill system [7, 25], supports both 
internal and external timestamps.  Internal timestamps are 
generated by the system as tuples arrive, while external 
timestamps come from the environment.  These timestamps are 
used to determine ordering and can be used as a way to 
understand when that ordering has been violated (out of order 
tuples), but they are not used as the fundamental unit of 
evaluation.  Instead, tuples are acted on as soon as they become 
available, much as in StreamBase. 
Time-driven semantics as we have discussed in this paper 
originated with the CQL language [24, 1]. The Oracle language is 
a direct descendant of CQL. 

10. CONCLUSION AND FUTURE WORK 
This paper begins the discussion of a SQL-based standard for 
streaming databases.  It discusses some deep model differences 
that exist between Oracle CQL and StreamBase StreamSQL.  We 
believe that similar differences exist among other prototypes and 
products.  Until fundamental model differences are settled, there 
is little chance of producing a good standard.  We believe that this 
paper has uncovered differences and proposed a novel way of 



resolving them. This proposal has the added benefit that it 
increases the expressive power of both languages and gives the 
user fine-grained control over time and simultaneous evaluation. 
There are many remaining problems that we could investigate on 
the road to a complete standard.  For example, pattern matching 
has been shown to be an important part of any language over 
streams. There have been several proposals [4, 16, 17, 20, 22]. In 
the same way that we tackled the evaluation model here, it makes 
sense for a group to perform a similar exercise for pattern 
matching semantics. 
Given the new model that is proposed here, there are some 
interesting questions regarding how we might efficiently 
implement such a model.  While, of course, this is not the 
business of a standards group, it nonetheless is an important issue 
that needs to be addressed.  We would need a good way to 
represent the current batch state of a stream.  Given a batch state, 
we would need a good implementation of window generation and 
table maintenance. 
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