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Abstract. We present a fast and effective bidding strategy for the Trad-
ing Agent Competition in Supply Chain Management (TAC SCM). In
TAC SCM, manufacturers compete to procure computer parts from sup-
pliers (the procurement problem), and then sell assembled computers
to customers in reverse auctions (the bidding problem). This paper is
concerned only with bidding, in which an agent must decide how many
computers to sell and at what prices to sell them. We propose a greedy so-
lution, Marginal Bidding, inspired by the Equimarginal Principle, which
states that revenue is maximized among possible uses of a resource when
the return on the last unit of the resource is the same across all areas of
use. We show experimentally that certain variations of Marginal Bidding
can compute bids faster than our ILP solution, which enables Marginal
Bidders to consider future demand as well as current demand, and hence
achieve greater revenues when knowledge of the future is valuable.

1 Introduction

A supply chain is a network of autonomous entities engaged in procurement of
raw materials, manufacturing—converting raw materials into finished products—
and distribution of finished products. The Trading Agent Competition in Supply
Chain Management (TAC SCM) is a simulated computer manufacturing scenario
in which software agents operate a dynamic supply chain [1].

In this paper, we study the TAC SCM bidding problem, where the goal is to
choose prices at which to offer to sell computers to customers today, balancing
the tradeoff between maximizing revenue per order—by placing high bids—and
maximizing the quantity of customer orders won—by placing low bids, within the
constraints of current and future component availability and production capacity.
Ideally, these decisions should be made taking into account future demand: in
a bull market it may be advantageous to reserve today’s production capacity
for future, more profitable demand; in a bear market it may be preferable to
bid more aggressively early on, claiming a larger share of current demand to be
fulfilled with products manufactured in the future.

To model these tradeoffs, we formulate bidding in TAC SCM as an N -day
recursive, stochastic, integer linear program (ILP). The mathematical program
is recursive because the agent faces the same decision variables day after day,
namely the prices at which to set its current bids so as to maximize the sum of its
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current revenue and its expected future revenue. It is stochastic in part because
of the inherent uncertainty in future demand. However, we also use stochasticity
to model the game-theoretic dynamics of bidding in a reverse auction, thereby
reducing what is truly a game-theoretic problem to a decision-theoretic one. This
is an important simplifying assumption that permeates our study.

A tractable approximation of 1-day bidding, called expected bidding, was con-
sidered in Benisch et al. [2]. We revisit this problem in paper, and show that it
reduces to a generalization of the classic knapsack problem, the so-called nonlin-
ear knapsack problem (NLK). Then, inspired by the Equimarginal Principle—
which states that revenue is maximized among possible uses of a resource when
the return on the last unit of the resource is the same across all areas of use—we
propose a greedy solution to the expected bidding problem, which we call Mar-
ginal Bidding. We advocate for Marginal Bidding in this paper because it scales
linearly with the number of days, and can hence more easily solve an N -day
extension of expected bidding than traditional ILP solutions.

To analyze the performance of various heuristics designed for TAC SCM, we
built a simulator that generates decision-theoretic simplifications of the game-
theoretic problems TAC SCM agents face, such as bidding. Using our simulator,
we compared the performance of several variants of Marginal Bidding with an
ILP solution. We show that certain variations of Marginal Bidding can compute
bids faster than our ILP solution; hence, incorporating a Marginal Bidder into
a TAC SCM agent would allow for more time to be spent on other decision
problems (e.g., procurement). Moreover, this speedup enables Marginal Bidders
to reason about future demand as well as current demand, and hence achieve
greater revenues when knowledge of the future is valuable. While the gains to
be realized by reasoning about future demand in TAC SCM appear modest, we
demonstrate that more substantial gains can be realized under more volatile or
seasonal conditions that generate more extreme market swings.

This paper is organized as follows. We begin by describing the Equimarginal
Principle of marginal utility theory, originally posited by Gossen in the mid 1800’s.
We note that this principle can be applied to solve the nonlinear knapsack prob-
lem. Then, we present a discretization technique coupled with a greedy algorithm,
which we prove approximately solve the NLK. (Technically, we prove that our ap-
proach yields a Fully Polynomial Time Approximation Scheme—a FPTAS—for
the NLK.) Next, we formalize TAC SCM bidding as an N -day recursive stochastic
program, and argue that expected bidding, a 1-day deterministic approximation,
can be reduced to solving an instance of the NLK. Then, we present Marginal Bid-
ding, a heuristic for solving an N -day extension of expected bidding that incorpo-
rates the aforementioned discretization technique and greedy approach to solving
the NLK. Finally, we compare experimentally the performance of two heuristics,
Marginal Bidding and an ILP, in simulations of the TAC SCM bidding problem.

2 The Equimarginal Principle

The Prussian economist H. H. Gossen is credited with observing two fundamental
laws of utility. The first is the Equimarginal Principle:
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If a man is free to choose among several pleasures but has not time to
afford them all to their full extent, then in order to maximize the sum of
his pleasures he must engage in them all to at least some extent before
enjoying the largest one fully, so that the amount of each pleasure is the
same at the moment when it is stopped; and this however different the
absolute magnitude of the various pleasures may be.

The Equimarginal Principle applies to problems in which a limited resource
(in the above quote, time, but later, means) is to be distributed among a set of
independent possible uses. Such problems are ubiquitous. Two problems com-
monly cited in economics textbooks include: a consumer allocating her (fixed)
income among different commodities to maximize her utility; and a firm deciding
how to proportion its (finite) labor and capital to maximize its profits.

The second of Gossen’s laws is the Law of Diminishing Marginal Returns:

The amount of any pleasure is steadily decreasing as we continue until
at last saturation is reached.

A key assumption underlying both of Gossen’s laws is that one cannot enjoy
all pleasures indefinitely because a pleasure is not free—rather, it comes at some
expense. Indeed, when Gossen writes the “amount of pleasure” he means the
additional value that derives from enjoying a bit more of the pleasure at a bit
more expense. In modern terms, this quantity—the ratio of a pleasure’s marginal
value to its marginal cost—can be construed as marginal return.

Assuming diminishing marginal returns, it is easy to see that in an optimal
solution to such a resource allocation problem, marginal returns are equal.1 In-
deed, if the marginal returns were unequal, a better allocation could be achieved
by redistributing a unit of the resource from the use with a lower marginal return
to the use with a higher marginal return. Gossen’s claim is less obvious: that
equal marginal returns imply an optimal solution. For a proof, see Mas-Colell
et al. [10] (Theorem M.K.3 on page 961), for example.

2.1 The Nonlinear Knapsack Problem

The problem domains in which the Equimarginal Principle applies have the
flavor of the knapsack problem. In this problem, we are given a set of n items,
each with a value vi and a weight wi, together with a knapsack of finite capacity
C ≥ 0. Our objective is to pack a variety of items in the knapsack such that the
sum of the values of the items packed is maximized, but their total weight does
not exceed the capacity of the knapsack. Formally,

max
x1,...,xn

n∑

i=1

vixi (1)

s.t.
n∑

i=1

wixi ≤ C (2)

1 For ease of exposition, we assume that in an optimal solution, a strictly positive
amount of the resource is allocated to each use: i.e., there exists an interior solution.
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In the continuous version of the problem, the xis are in the range [0, 1]; in the
0/1 version (which is NP-hard), they are in the set {0, 1}. In either case, the xis
are bounded; otherwise, the problems would be unbounded.

In the aforementioned sample economics problems, the decision faced is one
of choosing not only the best uses for the resource (i.e., which items to pack),
but the quantity xi ≥ 0 of the resource to allocate to each use, where, in gen-
eral, the value of a use can depend on its quantity. This final consideration
creates a knapsack problem with a potentially nonlinear objective function: i.e.,
a nonlinear knapsack problem (NLK) problem (see, for example, Hochbaum [8]).
Specifically,

max
x1,...,xn

n∑

i=1

fi(xi) (3)

s.t.
n∑

i=1

gi(xi) ≤ B and ∀i xi ≥ 0 (4)

In NLKs, the fis are value functions; the gis are cost functions; and the knap-
sack’s capacity C is typically re-interpreted as a budget B.

In a typical instance of the NLK, the xis are unbounded above, the fis are
real-valued, concave, and nondecreasing, and the gis are real-valued, convex,
and nondecreasing. Concavity (convexity) of the value (cost) function implies
the derivative of the value (cost) function, i.e., marginal value (marginal cost),
is nonincreasing (nondecreasing). When we divide nonincreasing marginal values
by nondecreasing marginal costs, the result is “diminishing marginal returns.”
Hence, by the Equimarginal Principle, total value is maximized in a NLK when
marginal returns are equated across all areas of use: i.e.,

μ1(x1) =
f ′
1(x1)

g′1(x1)
= . . . =

f ′
i(xi)

g′i(xi)
= . . . =

f ′
n(xn)

g′n(xn)
= μn(xn) (5)

The NLK can be solved exactly in polynomial time when f is quadratic and
g is linear (see, for example, Tarasov, et al. [11]). The approach we take in this
paper can be applied more generally; in particular, it can be used for arbitrary
nondecreasing concave value and convex cost functions.

2.2 A Discretization Technique

In this section, we propose a strategy for approximating the solution to the
NLK. This strategy involves discretizing the problem, and reformulating it as
a very special 0/1 (linear) knapsack problem that can be solved greedily. In
the next section, we prove that, with finer and finer discretization, (the value
of) an optimal solution to our discrete problem becomes a better and better
approximation of (the value of) an optimal solution to the original NLK.

Consider a nonlinear knapsack problem with the fis satisfying the typical
assumptions, and gi(xi) = cixi for ci, xi ∈ R, for all i = 1, . . . , n. We discretize
this problem by assuming the limited resource can be allocated to each use in
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K ∈ N equal parts, so that the size of each is k = B
K . By spending k on use i,

the incremental quantity si = k
ci

of i is consumed. We refer to si as the unit size
of use i, k as the unit cost, and K as the discretization factor.

Suppose we have consumed the quantity xi − si of use i. Consuming an addi-
tional unit of size si yields the following, which we call unit marginal return:

νi(xi) =

∫ xi
xi−si

f ′
i(t)dt

∫ xi
xi−si

g′
i(t)dt

=
fi(xi) − fi(xi − si)
gi(xi) − gi(xi − si)

=
fi(xi) − fi(xi − si)

cisi
=

fi(xi) − fi(xi − si)
k

(6)

Observe that our assumptions on f ensure that unit marginal returns are non-
increasing, just like marginal returns themselves.

Now, for use i and j = 1, . . . , K, let vij = νi(jsi) be the value of the jth
unit of use i, and let wij = k be the cost of this unit. We rewrite the objective
function (1) and the constraint (2) to pose a 0/1 (linear) knapsack problem:

max
xij

∑

ij

vijxij (7)

s.t.
∑

ij

wijxij ≤ B (8)

Here, xij ∈ {0, 1}, for all i = 1, . . . , n and j = 1, . . . , K.
Constraint 8 ensures that the budget B is not exceeded. Since weights are

constant and equal to k, this constraint can be restated as follows:
∑

ij xij ≤ K.
Hence, our problem is in fact a very special 0/1 (linear) knapsack problem that
can be solved greedily by consuming units of the various uses in sorted order
by value, from highest to lowest, until the budget is exhausted, breaking ties by
including the jth unit of use i before the j + 1st.

Further, a near-optimal solution to the (original) continuous NLK can be con-
structed from an optimal solution to our discrete problem, precisely because our
greedy solution to the latter never includes the jth unit without first includ-
ing the j − 1st. In Section 2.3 below, we derive a bound on the quality of this
greedy solution as an approximate solution to the continuous NLK, but first we
demonstrate the use of our discretization technique by example.

Example. Suppose Alice is shopping at a bulk food store and has $8 to spend on
oats and granola. Oats cost $2 per pound (i.e., go(xo) = 2xo). Granola costs $6
per pound (i.e., gg(xg) = 6xg). Alice’s value functions for oats and granola are
fo(xo) = 20xo−2x2

o and fg(xg) = 24xg−3x2
g, respectively. The optimal quantities

that Alice should buy can be calculated analytically. She should spend $44
7 on

oats and $ 12
7 on granola. This solution has total value ∼ 49.71.

Suppose this bulk food store does not accept denominations less than $2. In
other words, Alice must pay with $2 bills. Alice now faces a discretized knapsack
problem of the form just described, with K = 4 (the discretization factor) and
k = $8

4 = $2 (the unit cost). A unit of oats is of size so = $2
$2 per pound = 1 pound,

and a unit of granola is of size sg = $2
$6 per pound = 1

3 of a pound.
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Alice’s marginal returns for all units are listed in Table 1. Because her unit
marginal returns are decreasing, Alice can find an optimal solution to this dis-
cretized problem by allocating her money in a greedy manner to uses in this
decreasing order. In this situation, Alice should allocate her four $2 bills as
follows: spend her first $6 on oats, spend her last $2 on granola.

Table 1. Oats and Granola at a bulk food store. UC stands for unit cost, UMV for
unit marginal value, and UMR for unit marginal return.

Oats Granola
UC lbs Value UMV UMR lbs Value UMV UMR
k xo fo(xo) fo(xo) − fo(xo − so) νo(xo) xg fg(xg) fg(xg) − fg(xg − sg) νg(xg)
2 1 18 18 9 0.333 7.67 7.67 3.83
2 2 32 14 7 0.667 14.67 7 3.5
2 3 42 10 5 1 21 6.33 3.16
2 4 48 6 3 1.333 26.67 5.67 2.83

Note that this optimal solution to the discretized problem is nearly an optimal
solution to the corresponding continuous problem: its value is 42+7.67 = 49.67.
In this situation, as in most real-life problems, the resource has to be allocated in
discrete amounts (e.g., one dollar or one cent). If the store accepts half dollars,
then Alice should spend $6.50 on oats and $1.50 on granola, which yields total
value ∼ 49.69; if the store accepts quarters, then Alice should spend $6.25 on oats
and $1.75 on granola, which yields total value ∼ 49.71. The value of the latter
solution is within one cent of optimal. We formalize this intuition presently.

2.3 Main Theorem

Given an instance of a NLK, let OPTcon(B) denote the value of an optimal
solution to this problem, given a budget of B; and let OPTdis(B, K) denote
the value of an optimal solution to the corresponding discretized problem with
discretization factor K. We prove that OPTdis(B, K) approximates the value of
OPTcon(B). Specifically, OPTdis(B, K) is within a factor of 1−ε of OPTcon(B).

Theorem 1. Assuming the fis are concave and nondecreasing, the gis are con-
vex and nondecreasing, and the f ′

is and g′is are continuous,

OPTdis(B) ≥ OPTcon(B, K)
(

1 − 2n

K

)

A proof of this theorem appears in Greenwald, et al. [6]. The intuition for the
proof is as follows. We introduce an intermediate solution that optimally solves
a continuous NLK with a slightly different budget B′. The crucial property of
this intermediate solution is that it has a value OPTcon(B′) that is close to both
OPTdis(B, K) and OPTcon(B). A bound on the distance between OPTdis(B, K)
and OPTcon(B) is then obtained by adding the distance between OPTdis(B, K)
and OPTcon(B′) to the distance between OPTcon(B′) and OPTcon(B).
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Inputs:
discretization factor K
value functions fi

cost functions gi

Outputs:
a vector q of quantities consumed, one per use

1. for each use i
(a) initialize qi = 0
(b) insert i with priority νi(si) = fi(si)

gi(si)
into a priority queue Q

2. for t = 1 to K
(a) pop off of Q a use j with the highest priority
(b) increment qj by sj

(c) insert j into Q with priority νj(qj + sj) = fj(qj+sj)−fj(qj)
gj (qj+sj)−gj(qj)

3. return q

Fig. 1. A FPTAS for NLK. The algorithm runs in time O( 1
ε
n log n).

A maximization problem admits a Fully Polynomial Time Approximation
Scheme if for any ε > 0 there exists an algorithm whose run time is polynomial
in the input size and 1

ε that finds a solution whose value is within a factor of
1 − ε of the optimal. Our theorem implies that the NLK admits a FPTAS with
ε = 2n

K and running time O(1
ε n log n). The algorithm is shown in Figure 1. The

first loop runs in time O(n) and the second in time O(K log n); hence the entire
algorithm runs in time O(n + K log n) = O(n + 2n

ε log n) = O(1
ε n log n).

In the next section, we define a tractable approximation of the TAC SCM
bidding problem called expected bidding. We note that this problem reduces
to a NLK problem with gi linear and the fis satisfying the usual assumptions.
Hence, our discretization technique, followed by an application of the greedy
algorithm, can be used to compute an approximate solution to this problem.

3 Bidding in TAC SCM

In TAC SCM, six software agents compete in a simulated sector of a market
economy, specifically the personal computer (PC) manufacturing sector. Each
agent can manufacture 16 different products, characterized by different stock
keeping units (SKUs). Building each SKU requires a different combination of
components, of which there are 10 different types. These components are ac-
quired from a common pool of suppliers at costs that vary as a function of
demand. At the end of each day, each agent converts a subset of its components
into SKUs according to a production schedule that it generates for its factory,
within a maximum capacity of 2000 cycles. It also reports a delivery schedule
assigning the SKUs in its inventory to outstanding customer orders.

The next day, the agents compete in first-price reverse auctions to sell their
finished products to customers: i.e., an agent secures an order by underbidding
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Fig. 2. (a) Sample price-probability model. (b) Sample price-quantity model.

the other agents. More specifically, each day the customers send requests for
quotes (RFQs) to the agents. Each RFQ contains a SKU, a quantity, a due date,
a penalty rate, and a reserve price—the highest price the customer is willing to
pay. Each agent sends an offer in response to each RFQ, representing the price
at which it is willing to satisfy that RFQ. After each customer receives all its
offers, it selects the agent with the lowest-priced offer and awards that agent
with an order. After 220 simulated days of procurement, production, delivery,
and bidding each of which lasts a total of 15 seconds, the agents are ranked
based on their profits.

Assuming a suitable model of market dynamics—in particular, the current
and future prices at which components can be bought and finished products
sold—a TAC SCM agent faces three core decision problems [2]: procurement of
components from suppliers, bidding on customer requests for quotes (RFQs),
and scheduling of factory production and deliveries. In this paper, we focus on
the bidding problem, which subsumes the scheduling problem. A study of how
our methods extend to procurement remains for future work. Before detailing
our approach to bidding in TAC SCM, we discuss the model of market dynamics
on which our formulation of this decision problem is based.

3.1 Price-Probability Models

In a marketplace with indistinguishable products, a seller hoping to adjust its
market share can do so only by changing its price. Such a seller is likely to gather
relevant historical data for use in predicting the market shares that correspond
to various price settings. Following Benisch et al. [2], we assume that this predic-
tion task has already been completed, and the agent is already endowed with a
price-probability model that reports the probability of winning an order for each
possible bid on current and future RFQs.

Rather than specifying a price-probability model for each individual RFQ, we
partition the set of RFQs according to their defining characteristics so that we
can obtain a richer set of price-probability models (we are assuming that models
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built using more data can make more accurate predictions). In TAC SCM, a
natural partitioning of the set of RFQs is by SKU type and due date. We refer
to each element of such a partition as a market segment.

Figure 2(a) depicts the price-probability model defined by this equation:

p(x) =
2200 − x

800
1400 ≤ x ≤ 2200 (9)

This model asserts that a bid of 2200 has no chance of winning (it is the reserve
price above which there is no demand), whereas a bid of 1400 is guaranteed
to win (it is the price below which there is no supply). In between, at a price
of 1800, say, a bid wins with probability 0.50. Price-probability models need
not be linear, but can incorporate whatever techniques necessary to model the
likelihood of a bid price being the lowest offered in a market segment.

3.2 The Expected Bidding Problem

The N -day stochastic bidding problem is formulated as a recursive stochastic
program in Appendix A. A tractable approximation of 1-day stochastic bidding,
called expected bidding, was considered in Benisch et al. [2]. In the expected
bidding problem, it is assumed that a bid that has probability p of winning an
order for quantity q wins a partial order for quantity pq with probability 1. In
this deterministic setup, a set of bids on |R| RFQs results in exactly one set of
(partial) orders, instead of 2|R|, as in Equation 16.

Collapsing the stochastic content of a price-probability model into determin-
istic statistics in the form of partial orders is achieved by scaling the model by
the demand in the corresponding market segment. We call the ensuing models
price-quantity models. Recall the price-probability model depicted in Figure 2(a).
Assume this market segment consists of 80 RFQs of 5 SKUs each, 400 SKUs in
total. Since a price of 1800 wins with probability 0.50, at this same price, an
agent can expect to win 200 SKUs worth of demand (see Figure 2 (b)).

The objective in expected bidding is to find a set of bids x, one per market
segment i, that maximizes expected revenue, subject to the constraint that ex-
pected production does not exceed available capacity, given, (i) for each market
segment, a price-quantity model hi(xi) that maps bid prices into quantities—
i.e., expected market share; (ii) the total available production capacity C; and
(iii) the number of cycles ci ∈ N required to produce one unit of i.

Expected bidding can be stated formally as a mathematical program:

max
x1,...,xn

n∑

i=1

hi(xi)xi (10)

s.t.
n∑

i=1

ci hi(xi) ≤ C (11)

where xi ∈ R is the bid price in market segment i. Observe that this problem is
an instance of the NLK with fi = hi(xi)xi and gi = ci hi(xi).
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Assuming h is invertible, so that the price-quantity model is a 1 to 1 mapping
between bid prices and expected market shares, selecting a bid is equivalent to
selecting a quantity. In this case, by renaming variables (in particular, letting
x′

i = hi(xi)), we can solve the expected bidding problem as follows:

1. Invert h.
2. Solve this mathematical program:

max
x′
1,...,x′

n

n∑

i=1

x′
i h−1

i (x′
i) (12)

s.t.
n∑

i=1

cix
′
i ≤ C (13)

where x′
i ∈ R is the desired share of market segment i.

3. Bid h−1 (x′).

Hence, we have reduced the expected bidding problem to solving an instance
of the NLK in which uses are market segments, the knapsack’s capacity (or the
budget) is the factory’s capacity, the value functions fi(x′

i) = x′
i h−1

i (x′
i), and the

cost functions gi(x′
i) = cix

′
i. Assuming the fis are concave and nondecreasing,

the results we derived in Section 2 are directly applicable. In particular, our
Theorem 1 bounds the quality of a solution to Equations 12 and 13; since the
value of such a solution is equal to value of a solution to Equations 10 and 11,
Theorem 1 similarly bounds the quality of a solution to expected bidding. An
example of this reduction follows.

Example. Consider an instance of the expected bidding problem in which ci = 5
cycles and

hi(xi) =
2200 − xi

2
1400 ≤ xi ≤ 2200 (14)

for some market segment i. We invert this price-quantity model, which yields
the following “quantity-price” model:

h−1
i (x′

i) = 2200 − 2x′
i 0 ≤ x′

i ≤ 400 (15)

(Note that fi(x′
i) = x′

i h−1
i (x′

i) = x′
i (2200 − 2x′

i) is concave and nondecreasing
on the interval 0 ≤ x′

i ≤ 400; hence, our results from Section 2 apply.)
Next, we apply the discretization technique to market segment i. If the factory

capacity C = 4000 cycles and the discretization factor K = 10, then the unit cost
k = 400 cycles and the unit size si = 400 cycles

5 cycles per SKU = 80 SKUs. By querying
the quantity-price model in increments of 80 SKUs, we can generate a list of
prices at various incremental quantities. Each revenue is then the product of a
price and a corresponding quantity. Unit marginal revenues are the incremental
differences in revenue corresponding to the incremental quantities. Finally, unit
marginal returns are unit marginal revenues divided by unit costs.
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Table 2. Unit Marginal Returns on Market Segment i

Unit Cost Quantity Price Revenue Unit Marginal Revenue Unit Marginal Return
k x′

i h−1
i (x′

i) fi(x′
i) fi(x′

i) − fi(x′
i − si) νi(x′

i)
400 80 2040 163200 163200 408
400 160 1880 300800 137600 344
400 240 1720 412800 112000 280
400 320 1560 499200 86400 216
400 400 1400 560000 60800 152

The complete list of unit marginal returns in this example is shown Table 2.
These unit marginal returns could have been computed directly using Equation 6.
For example, the marginal return on the second unit in market segment i is:

vi2 =
fi(2si) − fi(si)
gi(2si) − gi(si)

=
h−1

i (2si) 2si − h−1
i (si) si

k
=

h−1
i (160) 160 − h−1

i (80) 80
(5)(80)

= 344

Based on the unit cost ci and the quantity-price model h−1
i (xi), we can create

such a list of unit marginal returns in each market segment.2 After doing so for
all market segments (i.e., after discretizing the problem), we compute a greedy
solution to the ensuing discrete problem. We input the output of this solution,
namely a vector of quantities x′, to the quantity-price model to obtain a vector
of bids, which is our solution to the expected bidding problem.

3.3 Marginal Bidding in TAC SCM

There is one important aspect of the TAC SCM bidding problem that we have not
thoroughly emphasized, namely that the bidding problem spans multiple days.
In this section, we describe how we extend our solution to the 1-day expected
bidding problem to the multi-day setting. We call the resulting heuristic Marginal
Bidding. One of the strengths of a greedy approach to bidding in TAC SCM is
that it is natural, and hence easily extensible.

The extension of a greedy solution from the 1-day to a multi-day problem
requires an additional parameter. The number of days in the multi-day problem
may be too large for even a greedy bidder to reason about within the available
time frame. We define the bidder’s window size W to be the number of days
of demand and production considered when making decisions. For example, a
window size of 17 means that the bidder can schedule production on 17 days,
namely today and on 16 future days. In doing so it considers the current set of
RFQs as well as an anticipated set of RFQs for 16 future days. These RFQs are
partitioned into market segments by SKU and due date.

When the window size W is large, a large value of K can increase the Marginal
Bidder’s run time to an unacceptable level. On the other hand, a small value of
2 Note that in our implementation we do not explicitly create lists of all unit marginal

returns. Since unit marginal returns are nonincreasing, we need only identify the
next highest unit marginal return in each market segment. See Figure 3 for details.
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K can result in a unit size si so large that it hinders the algorithm’s ability to
make short-term decisions at a fine enough granularity. Since we are interested
in invoking the Marginal Bidder with large window sizes, we implicitly vary K
across market segments (although the theorem presented in Section 2.3 is only
applicable when K is constant across market segments). More specifically, the
Marginal Bidder also takes as input a unit size si for each market segment i,
with each si proportional to the size of i’s range of due dates.

A detailed description of the Marginal Bidder appears in Figure 3. At a high
level, first it greedily fulfills outstanding orders in nonincreasing order of revenue
per cycle; second it greedily schedules production of units of the various market
segments in nonincreasing order of unit marginal returns; third it bids the price
associated with the quantity of demand met in each market segment. Note that
bids on all RFQs in a single market segment are equal.

For simplicity, the algorithm we present does not consider component con-
straints, but it can easily be extended to do so. The Marginal Bidder would have
to take as input current component inventory and anticipated daily component
arrivals, and could only schedule units for production when sufficiently many
components were predicted to be on hand. After scheduling, the correspond-
ing components would be removed from inventory by decrementing the daily
component inventory backwards from the production date.

Scheduling. To schedule outstanding orders and incremental quantities of market
segments for production, there are two natural approaches. First, we can schedule
as soon as possible, meaning that production is scheduled forwards from the
current day. Because the Marginal Bidder schedules greedily, using this method,
the most profitable products are produced on the current day, and less profitable
products are scheduled for production on subsequent days.

An alternative approach is to schedule for production as late as possible, which
means that production for an order or an incremental quantity of a market seg-
ment is scheduled backwards from its due date. While this approach allows for
production decisions to be postponed until more of the uncertainty in the mar-
ket is resolved, it also allows for empty or near-empty production schedules on
the current day, which can be risky. In particular, if demand or prices unex-
pectedly increase, the Marginal Bidder may wish it had more finished goods on
hand.

The Marginal Bidder uses both of these approaches, scheduling outstanding
orders as soon as possible because of the penalties incurred for defaulting, and
scheduling incremental quantities of market segments as late as possible in order
to allow for greater flexibility in bidding decisions.

While the Marginal Bidding algorithm is easy to understand and implement,
it behooves us to demonstrate that its performance is acceptable, particularly
with market segments and hence units of varying sizes, which renders our theory
inapplicable. This is the subject of the remaining sections of this paper.
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Inputs:
a window size W
the factory production capacity C
M market segments, each one i characterized by:

a product, a quantity, a range of due dates, a unit size si,
an invertible price-quantity model hi(x′), the number of cycles ci

required to manufacture 1 of i’s product, and a “successfully-
scheduled-quantity” qi initialized to 0

a set of outstanding orders
product inventory

1. sort outstanding orders in nonincreasing order by revenue per cycle
2. for each outstanding order (traversing the list of orders in sorted order)

(a) use product inventory to fulfill as much of the order as possible
(b) schedule the rest of the order for production as soon as possible within the

scheduling window W
(c) if the order still cannot be satisfied entirely, undo the inventory and production

schedule changes made in the last two steps

3. set j to be the market segment with the highest unit marginal return: i.e.,

j = argmax
i

(νi(qi + si))

= argmax
i

(
fi(qi + si) − fi(qi)
gi(qi + si) − gi(qi)

)

= argmax
i

(
(qi + si)h−1

i (qi + si) − qih
−1
i (qi)

cisi

)

4. while νj > 0
(a) take up to sj units of the product associated with j from product inventory
(b) schedule the remaining units for production as late as possible but before the

median due date associated with j and within the scheduling window W
(c) if sj units cannot be supplied, then set νj(qj +sj) = −1 and undo the inventory

and production schedule changes made in the last two steps
(d) otherwise, if sj units can be supplied, increment qj by sj

(e) set j to be the market segment with the highest unit marginal return

5. for each market segment i
(a) bid the price at which the agent expects to win the quantity it successfully

scheduled: i.e., bid h−1
i (qi)

Outputs: A bid for each market segment, and hence for all the RFQs that comprise
that market segment. Note that bids on all RFQs in a single market segment are equal.

Fig. 3. Marginal Bidding Algorithm

4 Experimental Results

In this section, we report on experiments designed to compare the performance
of four bidding algorithms with varying abilities to reason about the future, an
ILP bidding heuristic (see Benisch et al. [2]) and three variations on the Marginal
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Bidding heuristic developed in this paper. We expect the Marginal Bidders to
compute bids faster than the ILP, and we expect this speed to enable them to
consider larger windows into the future, which should lead to higher revenues
than the ILP under some market conditions (and never lead to lower revenues).
We test these conjectures on instances of TAC SCM bidding in a simulator we
built that tests individual agents in isolation by generating decision-theoretic
simplifications of the game-theoretic problems TAC SCM agents face.

4.1 Test Suite

We tested an integer linear programming solution with a 1 day window (ILP),
meaning it did not reason about any future demand beyond the current RFQs
and outstanding orders arriving each day. We compared this ILP with three
variations of the marginal bidder: a marginal bidder with a 17-day3 window
(MB-17), a marginal bidder with a full-game window (MB-Full), and a marginal
bidder with a hybridization of the two that considers the full game window, but
does so at a coarser granularity as it reasons further into the future in order to
keep its run time in check (MB-Coarse).

The 17 Day (MB-17) and full-game (MB-Full) bidders partition demand (i.e.,
the set of current and future RFQs) into market segments by SKU type and due
date, and the size of a unit in each market segment is 1 product. The hybrid
full-game bidder (MB-Coarse) also divides demand up by SKU type and due
date. For the first 17 days, it considers each due date separately, but beyond the
initial 17 days it divides demand into increasingly larger chunks, whose due-date
ranges grow by powers of 1.8.4 For the coarse bidder, each market segment’s unit
size is 1 product multiplied by the number of days in that segment.

Since each TAC SCM day is 15 seconds, and a bidding policy is one of many
decisions an agent must make each day, it may not be wise for an agent to
allot too much of its daily run time to bidding alone. We thus study a likely
TAC SCM situation in which the bidder is only given 5 seconds to formulate its
daily bidding policy. The full-game Marginal Bidder often requires more than 5
seconds per day to compute its policy, so it is not a feasible TAC SCM bidder,
but we include it in this discussion for benchmarking purposes.

In order to reach a reasonable solution within the allotted 5 seconds, the ILP
dynamically calculates an appropriate degree of discretization using a formula
that was empirically determined to minimize the ILP’s distance from optimal-
ity within a 5 second window. The equation for the number of price points is
2300/(# of RFQs + # of Orders). An ILP with a run time of up to 15 seconds
and additional price points was also tested, but did not yield significant gains.5

3 We chose 17 as the default window size because it is the last day on which a current
RFQ with the latest possible due date can be filled in TAC SCM.

4 For example, SKUs due on days 18-19 are grouped together (1.8 ≈ 2), as are SKUs
due on days 20-22 (1.82 ≈ 3), and days 23-28 (1.83 ≈ 6), and so on.

5 An ILP with a 2-day window was also tested, as was one with a 17-day window and
constrained capacity (2000 cycles on day 1 and 2000 cycles on days 2 through 17).
Again, these variants did not yield significant gains.
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4.2 Experimental Design

Recall that in TAC SCM each agent submits its bids to a reverse auction, so that
an RFQ is awarded to the agent that bids the lowest price below the reserve price.
Using our simulator, we tested our bidding algorithms in isolation, not against
other bidding agents, as would be the case in a true reverse-auction setting. The
simulator simply awarded contracts by transforming each offer into an order
with a certain probability, namely that which is associated with the bid price
under the price-probability model for the relevant market segment. Hence, we
simulated the stochastic bidding problem, although our heuristic solutions are
approximate solutions to the expected bidding problem.

In our experiments, agents were endowed with perfect price prediction: i.e.,
the various price-probability models (one per market segment per simulation
day) were shared between the agent and the simulator. Regarding demand, the
number of customer RFQs of each SKU type scheduled to arrive each day was
broadcast before the simulations began. Then, on each simulation day, the agents
received a set of current RFQs whose quantities and due dates were sampled
from the distributions outlined in the TAC SCM game specifications, and they
assumed that the quantity and due date associated with each of the future RFQs
were the means of the same distributions.6 Reserve prices were also known to
the agents; they were built in to the price-probability models.

We tested our bidders by running 25 simulations of 100 day games under
three families of market conditions: (i) constant: i.e., conditions on one day are
reflective of the conditions on the next; (ii) gradually changing conditions; and
(iii) sudden shifts, including demand or price shocks. Under the non-constant
conditions we examine situations of rising demand and price. Falling demand
and price conditions are not presented, but produce similar results.

For simplicity, in these simulations we assume infinitely many components.
Introduction of component constraints does not appear to significantly alter the
relative performance of our bidders.

4.3 Constant Conditions

In our first set of market conditions, we compare the bidders under constant
demand and price. Presented here are steady conditions of high demand, defined
as 20 RFQs per SKU type per day, which is the maximum possible according
to the TAC SCM game specification, and low demand, defined as 5 RFQs per
SKU type per day, the lowest possible. Prices in this experimental setup range
linearly from 50% to 125% of the SKU base price.

Under such conditions, we should expect to see no particular advantage to
planning for the future, since an optimal solution to the entire game can be con-
tructed by concatenating a sequence of optimal solutions, one per day, computed
6 The reason for drawing a distinction between the quality of the predictions of the

number of RFQs of each SKU type and their attributes is: the former is somewhat
predictable in TAC SCM—it is dependent on history (see, for example, Kiekintveld et
al. [9])—while the latter is not.
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Fig. 4. (a) Revenue from deliveries under constant market conditions. (b) Average
daily bidder times in high demand conditions. Low demand bidder times were similar.
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Fig. 5. (a) Revenue from deliveries under feasible SCM market conditions. (b) Average
daily bidder times in Price Rise conditions. Other market conditions had similar run
times.

for each day in isolation. Indeed, in terms of revenue, all the bidders are compet-
itive with one another under these conditions (see Figure 4(a)). Note however
that MB-17 and MB-Coarse arrive at their solutions an order of magnitude faster
than the ILP or the MB-Full bidding algorithms (see Figure 4(b)).

4.4 Shifting Conditions

More interestingly, market conditions can change over the course of a TAC SCM
game, either steadily as in a market adjustment or suddenly as in a demand or
price shock. In our next experimental setup, demand is initialized to 5 RFQs
per SKU per day, and prices range linearly from 50% to 75% of the SKU base
price. We then considered shifts to 20 RFQs per SKU per day and prices ranging
from 100% to 125% of the base prices by day 50. These shifts are representative
of the magnitude of changes an agent might observe while playing a typical
TAC SCM game. These changing market conditions were tested both as steady
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linear accumulations from day 1 to day 100 and as abrupt surges on day 50. In
our price-shifting simulations demand is held constant; in our demand-shifting
simulations price is held constant.

As expected, those bidders with more extensive knowledge of the future (MB-
Full, MB-Coarse) are able to exploit the mid-game surges by dedicating produc-
tion from today to future demand when conditions are more favorable. Bidders
with a shorter window (ILP, MB-17) are unable to plan far enough ahead to take
advantage of the upcoming shifts, and hence accumulate less revenue over the
course of the game. In addition to the additional revenue gained by exploiting its
knowledge of the future, the MB-Coarse bidder continues to run in substantially
less time than the ILP. See Figure 5.

The advantages of a larger window are more pronounced under those market
conditions in which the shift in demand or price comes as a sudden spike rather
than as a steady rise. When demand or prices rise gradually, even an agent with
a small window is aware that tomorrow’s market conditions are slightly more
profitable than today’s, and can reserve some inventory for future sales. However,
when demand or price spikes suddenly, an agent is not aware of more desirable
future market conditions until the spike falls within its window.

Because one of our simplifying assumptions for these simulations is that agents
have perfect models of future demand and price, it is encouraging that MB-
Coarse performs just as well as MB-Full. Their similar performance suggests
that the benefits of looking into the future may still be realized by agents with
more realistic but less accurate models.
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Fig. 6. (a) Revenue from deliveries in extreme market conditions. (b) Average daily
bidder times in Price Rise conditions. Other market conditions had similar run times.

4.5 Extreme Conditions

Within the context of TAC SCM, the previous experimental setup characterizes
shifts from one extreme set of realistic conditions to another, and the gains
resulting from knowledge of the future are modest. However, it is easy to envision
markets that are more naturally volatile or are subject to large seasonal trends
in demand. The greater the extent to which market conditions vary across time,
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Fig. 7. (a) Sample quantity-price models before any shift, after a price shift, and after a
demand shift. To illustrate the constraining effects of production capacity, also shown
is a sample daily producible quantity. In our experiments, price shifting conditions
result in higher revenues than demand shifting conditions, and thus knowledge of a
future price shift is more valuable than knowledge of a future demand shift. (b) For
quantity-price models with flat slopes, predicting future demand is not very important.

the greater the opportunity for bidders able to consider a larger window into
the future to earn greater profits. In order to demonstrate this effect, we present
a second set of simulations assuming shifting market conditions, but the shifts
are of greater magnitudes. In particular, demand surges from 5 to 40 RFQs per
SKU per day, and price rises from [50%, 75%] to [200%, 250%] of the base prices,
again as both an interpolated steady rise and as an overnight jump.

With no significant changes in run time (compare Figures 5(b) and 6(b)), the
marginal bidders are able to exploit the extreme changes in market conditions,
and in particular the bidders with larger windows (MB-Full and MB-Coarse)
are able to earn even greater profits (see Figure 6(a)). Also of interest is the
relative impact of demand changes versus price changes. We observe a more pro-
nounced impact when considering knowledge of the future under price-changing
conditions for two reasons.

First, because of capacity constraints, an agent can only produce a limited
quantity of each product on each day. Hence, an increase in demand does not
necessarily translate into an increase in the number of finished products. So even
if a demand shift results in higher prices, revenues need not increase substantially,
particulary in comparison to the revenue increase associated with a price increase
(see Figure 7(a)). If the magnitude of the price shifts in our experiments were
reduced, or if production capacity were increased, stockpiling products until a
demand shift could be as worthwhile as stockpiling products until a price shift.

The second factor that mitigates the advantage of knowledge of the future in
conditions of shifting demand is the relatively flat slopes of our quantity-price
curves. With flatter slopes, the difference in revenue between prices on the initial
curve and prices on the curve after a demand shift is small (Figure 7(b)). Thus it
matters less if the agent stockpiles products for the future, and in turn it matters
less if the agent has any knowledge of the future. If the quantity-price curves had
steeper slopes, knowledge of the future in conditions of shifting demand would
likely prove more valuable than our current experiments suggest.
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5 Related Work

The NLK problem, also known as the Nonlinear Resource Allocation problem,
is well-studied. The interested reader is referred to Patrikson [14] for a recent
survey, which includes a number of algorithms that solve various formulations
of the NLK. One feature of the approach described here is that we construct
a solution incrementally; this makes it easy to check if the solution remains
feasible under more general conditions: e.g., when not only capacity but also
scheduling or component constraints are present. Also, unlike other techniques
(e.g., Bretthaur and Shetty [4]), our algorithm does not rely on value or cost
functions being differentiable or having closed-form representations (although
our theoretical results do not hold under these more general assumptions).

Most closely related to our work is the work of Hochbaum [8]. In her study
of the NLK, she employs a discretization technique that generalizes the one pre-
sented here. Correspondingly, the discretized problem we construct is a special
case of her simple allocation problem; in our problem, all variables are binary
rather than non-negative and integer-valued. Like us, she solves her discrete
problem greedily, and, invoking work in a related paper [7], she connects this
greedy solution back to an optimal solution to the original (continuous) NLK.
Her results apply in the special case in which the gis are linear. Our main theorem
applies more generally; in particular, the gis may be convex.

Benisch et al. [3] reduce a probabilistic pricing problem (akin to 1-day ex-
pected bidding) to the NLK, and present an ε-optimal solution to this problem
assuming diminishing marginal returns. Although they demonstrate that their
algorithm can be efficient in practice, they provide no theoretical guarantees on
its run time. Also, their algorithm is not incremental, so it is not immediately
obvious how to extend it to apply to problems with additional constraints.

The TacTex team developed a greedy bidding agent for TAC SCM along the
lines of the Marginal Bidder presented here, with a few subtle distinctions [13].
TacTex is initialized to bid reserve prices on each RFQ, and then it iteratively
reduces its bids according to a selection mechanism until production capacity
is reached or profits are no longer increasing. The selection mechanism relies
on a heuristic that determines whether the most limiting resource is production
capacity (in which case it selects by profit per cycle) or component availability (in
which case it selects by change-in-Profit / change-in-Probability). No theoretical
guarantees validating their approach are discussed.

Finally, researchers at the Cork Constraint Computation Center implemented
an ILP approach to bidding in a constraint-based TAC SCM agent, Foreseer [5].
Not unlike the expected bidder posited in Benisch et al. [2], Foreseer uses profit
as the objective function, bid prices as the decision variables, and constraints
based on factory capacity, component availability, and reserve prices.

6 Summary and Future Work

In this paper, we described a technique for solving the NLK by converting it into
a (discrete) simple allocation problem that can be solved greedily. Our theoretical
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results establish that the greedy solution to the resulting simple allocationproblem
is a FPTAS for the NLK. Although more complicated algorithms with better run
times are known, our simple incremental solution affords us extra flexibility. In par-
ticular, the greedy algorithm extends easily into the Marginal Bidding heuristic,
which solves an extended version of the NLK with natural scheduling and compo-
nent constraints.

Our ultimate goal is to develop a scalable bidding algorithm that can be ex-
tended into a procurer capable of reasoning about long-term future demand.
Because the ILP considers each RFQ as a separate decision variable, its com-
plexity grows rapidly as a function of the number of RFQs. By reasoning about
SKUs in collective market segments, the Marginal Bidders avoid this complexity
and appear to be more readily extensible to the procurement problem. However,
it remains to be seen whether our Marginal Bidding approach can be extended
to handle interdependent uses, where devoting resources to one use can affect
the marginal return of another. Interdependencies arise naturally in procurement
because components are shared among SKU types.

Despite the game-theoretic nature of bidding in TAC SCM, our focus here was
simply on a decision-theoretic (stochastic) optimization problem, not on game-
theoretic equilibrium calculations. The enormity of the decision space in TAC
SCM renders game-theoretic strategic analysis intractable with current technol-
ogy. It remains to be seen whether an effective game-theoretic approach can be
developed to exploit strategic opportunities in the TAC SCM game. In the near
future, we plan to test the robustness of our algorithms to imperfect modeling
of future prices and demand. Doing so would lead to progress in addressing the
challenging game-theoretic issues that arise in environments like TAC SCM that
are inhabited by multiple artificially intelligent agents.
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A The Stochastic Bidding Problem

The bidding problem posed here is intended to model the bidding problem that
agents face in TAC SCM. For simplicity, we assume all due dates are set past the
end of the game, making penalties irrelevant. Also, as we are concerned only with
bidding and not with procurement in this paper, all components are assumed to
be infinitely available at no cost.

Agents are assumed to have perfect price prediction, that is, they know the
probability of winning an order as a function of any bid they submit. We encode
this information in price-probability models. They are also assumed to have
access to an accurate stochastic model of the number and variety of RFQs that
will arrive on each future day of the game.

A decision-theoretic version of the TAC SCM bidding problem, under the
aforementioned assumptions, can be formulated naturally as a recursive stochas-
tic program. We have not seen this program appear elsewhere in the literature
(except in Odean et al. [12]), so we present it here, using the notation explained
in Figure 8.

The recursive function takes five inputs: today’s product inventory, today’s
outstanding orders, today’s RFQs, the history of RFQs received on previous
days, and today’s date. The objective is to choose bids on today’s RFQs and
to decide upon today’s production and delivery schedules in such a way as to
maximize today’s revenue plus expected future revenue.
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Variables
xr ≥ 0 bidding policy: bid price for RFQ r
yj ≥ 0 production schedule: quantity of SKU j
zi ∈ {0, 1} delivery schedule:

1 if order i is delivered; 0 otherwise

Indexes
t day index
j SKU index

Functions
p(r, xr) probability of winning RFQ r with bid xr

Constants
aj number of units of SKU j delivered
bj number of units of SKU j in inventory
cj cycles expended to produce one unit of SKU j
dij 1 if order i is for SKU j; 0 otherwise
πi(t) revenue (minus penalty) for delivering order i on day t

zero if t is past order’s due date
qi quantity of order i
N total number of days
C daily production capacity in cycles
O set of outstanding orders
Q set of (today’s) orders
R set of (today’s) RFQs
R′ set of tomorrow’s RFQs
h history of RFQs received until now

Fig. 8. Notation for Recursive Stochastic Program

Bids on day t are placed on RFQs received that day. The set of RFQs R′

received on day t + 1 is a random variable that is independent of any decisions
but depends on the history of past RFQs received.

The bids placed on day t determine the likelihoods of receiving various sets
of orders on day t + 1. Each set of new orders is called a scenario. Each scenario
Q is weighted by probability Pr(Q) as determined by the given price-probability
model. Specifically, Pr(Q) equals the product of the probabilities of winning all
RFQs that are part of Q and the probabilities of not winning RFQs that are not
part of Q (Equation 17).

Delivery and production scheduling decisions today affect what will remain
in product inventory tomorrow. Indeed, tomorrow’s product inventory equals
today’s product inventory b minus any product inventory depleted by today’s
deliveries a plus any additional inventory produced today y.

Each day capacity and allocation constraints are enforced. Equation 18 en-
sures that there are enough products in inventory for today’s delivery schedule.
Equation 19 ensures that today’s production schedule does not consume more
cycles than the daily capacity.
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The base case (Equation 20) of the recursion pertains to the last day. Orders
can be scheduled for delivery but there is no production or bidding.

if 0 ≤ t < N,

F (b, O, R, h, t) = max
x,y,z

∑

i∈O

ziπi(t)+

∑

Q∈2|R|

Pr(Q)ER′|h [F (b − a + y, O ∪ Q, R′, h ∪ R, t + 1)] (16)

subject to:

Pr(Q) =
∏

r∈Q

p(r, xr)
∏

r/∈Q

(1 − p(r, xr)) (17)

aj =
∑

i|i∈O,dij=1

ziqi ∀j; a ≤ b (18)

∑

j

yjcj ≤ C (19)

if t = N,

F (b, O, R, h, t) = max
z

∑

i∈O

ziπi(t) (20)
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