
2/24/2006 Red-Black Trees 1

Red-Black Trees

6

3 8

4

v

z



2/24/2006 Red-Black Trees 2

Outline and Reading
From (2,4) trees to red-black trees (§10.5)
Red-black tree (§ 10.5.1)

Definition
Height
Insertion

restructuring
recoloring

Deletion
restructuring
recoloring
adjustment



2/24/2006 Red-Black Trees 3

From (2,4) to Red-Black Trees
A red-black tree is a representation of a (2,4) tree by means of a 
binary tree whose nodes are colored red or black
In comparison with the (2,4) tree, a red-black tree has

same logarithmic time performance
simpler implementation with single node type (rather than 2-,3- & 4-
nodes)

2   6   73    54

4 6

2 7

5

3

3

5OR



2/24/2006 Red-Black Trees 4

Red-Black Tree
A red-black tree can also be defined as a binary 
search tree that satisfies the following properties:

Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of red nodes are black
Depth Property: all the leaves have the same black depth

9

154

62 12

7

21



2/24/2006 Red-Black Trees 5

Height of a Red-Black Tree
Theorem: A red-black tree storing n items has height 
O(log n)
Proof:

The height of a red-black tree is at most twice the height of 
its associated (2,4) tree, which is O(log n)

The search algorithm for a red-black tree is the same 
as that for a binary search tree
By the above theorem, searching in a red-black tree 
takes O(log n) time



2/24/2006 Red-Black Trees 6

Insertion
To perform operation insert(k, o), we execute the insertion 
algorithm for binary search trees and color red the newly inserted 
node z, unless it is the root

We preserve the root, external, and depth properties
If the parent v of z is black, we also preserve the internal property and 
we are done 
Else (v is red ) we have a double red (i.e., a violation of the internal 
property), which requires a reorganization of the tree

Example where the insertion of  4 causes a double red:

6

3 8

6

3 8

4
z

v v

z



2/24/2006 Red-Black Trees 7

Remedying a Double Red
Consider a double red with child z and parent v, and let w be 
the sibling of v

4

6

7z
vw

2

4   6   7

.. 2 ..

Case 1: w is black
The double red is an incorrect 
replacement of a 4-node
Restructuring: we change the 
4-node replacement

Case 2: w is red
The double red corresponds 
to an overflow
Recoloring: we perform the 
equivalent of a split

4

6

7z
v

2  4  6  7

2
w



2/24/2006 Red-Black Trees 8

Restructuring
A restructuring remedies a child-parent double red when the 
parent red node has a black sibling
It is equivalent to restoring the correct replacement of a 4-node
The internal property is restored and the other properties are 
preserved

4

6

7
z

vw
2

4   6   7

.. 2 ..

4

6

7

z

v

w
2

4   6   7

.. 2 ..



2/24/2006 Red-Black Trees 9

Restructuring (cont.)
There are four restructuring configurations depending on 
whether the double red nodes are left or right children

2

4

6
6

2

4

6

4

2
2

6

4

2 6

4



2/24/2006 Red-Black Trees 10

Recoloring
A recoloring remedies a child-parent double red when the parent 
red node has a red sibling
The parent v and its sibling w become black and the grandparent u
becomes red, unless it is the root
It is equivalent to performing a split on a 5-node
The double red violation may propagate to the grandparent u

4

6

7z
v

2  4  6  7

2
w 4

6

7z
v

6  7

2
w

… 4   …

2

u u



2/24/2006 Red-Black Trees 11

Analysis of Insertion
Recall that a red-black tree 
has O(log n) height
Step 1 takes O(log n) time 
because we visit O(log n)
nodes
Step 2 takes O(1) time
Step 3 takes O(log n) time 
because we perform

O(log n) recolorings, each 
taking O(1) time, and
at most one restructuring 
taking O(1) time

Thus, an insertion in a red-
black tree takes O(log n) time

Algorithm insert(k, o)

1. We search for key k to locate 
the insertion node z

2. We add the new item (k, o) at 
node z and color z red 

3. while doubleRed(z)
if isBlack(sibling(parent(z)))

z ← restructure(z)
return

else { sibling(parent(z) is red }
z ← recolor(z)



2/24/2006 Red-Black Trees 12

Deletion
To perform operation remove(k), we first execute the deletion 
algorithm for binary search trees
Let v be the internal node removed, w the external node removed, 
and r the sibling of w

If either v of r was red, we color r black and we are done
Else (v and r were both black) we color r double black, which is a 
violation of the internal property requiring a reorganization of the tree

Example where the deletion of  8 causes a double black:

6

3 8

4

v

r w

6

3

4

r



2/24/2006 Red-Black Trees 13

Remedying a Double Black
The algorithm for remedying a double black node w with sibling 
y considers three cases
Case 1: y is black and has a red child

We perform a restructuring, equivalent to a transfer , and we are 
done

Case 2: y is black and its children are both black
We perform a recoloring, equivalent to a fusion, which may 
propagate up the double black violation

Case 3: y is red
We perform an adjustment, equivalent to choosing a different 
representation of a 3-node, after which either Case 1 or Case 2 
applies

Deletion in a red-black tree takes O(log n) time



2/24/2006 Red-Black Trees 14

Red-Black Tree Reorganization
remedy double redInsertion

double red removed 
or propagated upsplitrecoloring

double red removedchange of 4-node 
representationrestructuring

result(2,4) tree actionRed-black tree action

remedy double blackDeletion

restructuring or 
recoloring follows

change of 3-node 
representationadjustment

double black removed 
or propagated upfusionrecoloring

double black removedtransferrestructuring

result(2,4) tree actionRed-black tree action


