9/5/24

Course
Introduction

CSCI2340: (Graduate) Software Englneermg

Steven P. Reiss

CSCI2340 Fall 2024 - Lecture 1

{ WE DON'T ALL
| TWITTER KAYLA.

| THE CLASS WHAT

Q) THE SUMMER... /

FOLLOW YOU ON |

50 PLEASE
JUST TELL

YOU PIP PURING

L0 ,\\,V_L

What is Software Engineering “:“';é

ENGINE
\I,\ ~ ~~ NETWORK
e 2

SSSSSS

* The systematic application of engineering approaches to
the development of large software systems.

* The application of a systematic, disciplined, computable
approach for the development, operation, and maintenance
of large software systemes.

* A process of analyzing user requirements and then
designing, building, and testing a software application which
will satisfy those requirements.

9/5/24 CSCI2340 Fall 2024 - Lecture 1 2

What Has It Accomplished

* Size of software systems has increased
e By about a factor of 10 each decade

* History
e 1970: Box of punch cards (2000), large program: 10,000 LOS ==
e Compile time in lines per minute (10-1000) :
e 1980: 5M disk was large, large program: 100,000 — .
e 1990: 40M disk was std, large program: 1,000,000 e
e 2000: 10G disk was std, large program: 10,000,000
e 2010: 1T disk is std, large program: 50,000,000 (windows)

e 2020: 10T disk is std, large program: 2,000,000,000 (google web)
* 100,000,000 in a car

Question: What is YOUR Largest System

* 1,000 - 2,000 lines (CS15/18) =

Modern High-end Car

* You shouldn’t be here oy

Large Hadron Collider

* 10,000 - 20,000 lines (CS32) " ke
* Probably a bit less, but designed for

* 200,000 lines (Internship) =
2,000,000 lines

* Larger
* How much of this did you understand

Software Engineering

* Has focused on how to build large software systems
* How to build software at scale

* Has developed tools, techniques & frameworks
* For building software at scale

e Attempts to address the various problems
 When building software at scale

* Let’s get an overview of what all this means

What is a Large Software System

* Could be measured in lines of code or source (©)
* But this varies over time, language, etc. @
* Still the only meaningful measure

(f

* A system that is too complex for one person to understand

* A system that takes more than K man-years to build
e K=107?
e Mythical Man Month

9/5/24 CSCI2340 Fall 2024 - Lecture 1 6

Large Software System Characteristics

* Require multiple developers

* Long-lived

* Evolve, not built all at once

* Distributed (client-server, web-based, multiple servers)

e Concurrent (multithreaded, multiprocess)

 Multiple languages F A;

* Prone to failure

* Guaranteed to have bugs
e Often 1000’s

9/5/24 CSCI2340 Fall 2024 - Lecture 1 7

Software Engineering at Scale

* How to build large systems
* Multiple person development
* Long-lived Al
* Evolve, not build at once
* Distributed]
* Concurrent
* Avoiding failure

Software Engineering at Scale

* Multiple person development
* Long-lived

* Evolve, not build at once

* Distributed

* Concurrent

* Avoiding failure

Software Engineering at Scale

* Importance of Managing Risk
* Multiple person development
* Long-lived
* Evolve, not build at once
 Distributed
* Concurrent
* Avoiding failure

Traditional Software Engineering

Waterfallmo 1

{, bdtask

9/5/24

Plan

What Is

Spiral Model

~

Evaluate

Risk
Analysis
) .Risk Management

Al \

-
% Testing

I;rtegrouon Eng ineering

Implementation

CSCI2340 Fall 2024 - Lecture 1

iat Is

| Model

Risk
Analysis

.Y\ Risk Management

—e
" Prototypes

.
Design
\ Y A
| . A 4 Coding
\ 3 ¢ Y . -
W integration ENgineering
T;sting

Implementation

11

Software Engineering at Scale: Requirements

e Done over time

* Determine what the user needs
* Define the problem to be solved

Enterprise Software Requirements Gathering

@m“\“)

)

5.0 dl I | |
4
Q o=

i

Software Engineering at Scale: Specifications

-)etermine What ShOUId be bU||t Software Requirement Specifications

* Feature-based specification

* Risk-based specification
* Minimal Viable Product concept

* Include more than just functionality
 Safety, performance, reliability
e Quality, maintainability
* Documentation

= bmc

Software Engineering at Scale: Design

* Design what will be built

L |
e Software Architectures
* High-level design using interfaces = . = ..
* Object-oriented design SOFTWARE DESIGN

* Risk-based design & E O
* Team-based design

e Design for maintenance

* User interface design

* Distributed/concurrent system design

9/5/24 CSCI2340 Fall 2024 - Lecture 1 14

Software Engineering at Scale: Coding

* Coc
* Coc
* Coc
* Coc
* Coc

* CocC

9/5/24

ing for risk

ing for maintenance
ing for teams

ing user interfaces
ing for security

ing for privacy

CSCI2340 Fall 2024 -

Lecture 1

SOFTWERE DEVELOPER LIFE
CAREER, Liqnus, CoDsNG, DALY L3FE, STORZLS

15

Software Engineering at Scale:
Verification and Validation

Verification Validation

* Debugging : ~ - s

o . . style i | estin -
Testing Strategies checkers .~ mtest /" N\ tomer |
)) " integration acceptance . Prototyping
* Static Analysis [e [\ et
i AR automated" system test " usability - i 'l
_ _ | y modeling
* Contracts | tesing || et agumL |
| proofs of o N s Juui ™ formal methods |
\ correctness \ TR) miodel
* Type Safety chueness \ code 7/ checking /
analysis 2\ inspection goal analysis
° &
°
MOdeI ChECkmg consistency model/specification
inspection

checking

2 e S 2 e

9/5/24 CSCI2340 Fall 2024 - Lecture 1 16

Software Engineering at Scale: Maintenance

\AnAr

* Keeping the system running
* As hardware and languages evolve QQ
e Minimizing down time wf’r ;,Q ’

o Correctwe ~§ Adaptive! "

¢ F|X|ng pr0b|emS (bugS) Maintenance Maintenance
* Adding features (evolution) Ui B |
. 3 x"-)._._,;;:l.* / - AT

* Making the system more robust ,‘ | *[*i “
* Making the system more secure iiimane: 1 ntocanca
P Ma <ing t’]e System . Scalability Enhancements

9/5/24 CSCI2340 Fall 2024 - Lecture 1 17

All Software Development is Maintenance

e Systems are too big to write all at once

* Requirements will have changed by the time it is done
e Systems evolve rather than being created

* Too much demand for change
 Competing products, upgraded OS, platforms

* User’s expectations are high
* Expect software to be perfect
* Expect software to evolve
* Expect a better user interface
* Expect new features and Uls continually

THE
SOFTWARE
DEVELOPMENT
CYCLE

All Software Development is Maintenance

* Many software projects start with existing code e A
e Convert that code to a new purpose Q R Q
e Extend that code for new functionality /
» Rewrite the code so it remains usable o I

* Most software is developed from an existing base
* Templates or skeletons for various purposes
* Based on prior systems
* As extensions of existing systems

* Most software makes extensive use of libraries & frameworks
* Don’t write something that has been written before
* In-house, open-source, purchased
* And existing systems

Agile Development

(-

2 g

* Realize that most development is maintenance
* Develop a software process to take this into account

* Goal is to provide an early working system

* To get feedback from users to direct future development
* To test the system to ensure it is robust

* To provide satisfaction to the developers
* And then extend that early system into a complete system

e Attempted to completely redo software development
* But more evolutionary then revolutionary

Extreme Programming

* Agile development derived from Extreme Programming (XP)
* Develop in short bursts
* Test-first development
* Do specifications and requirements in terms of stories
* Pair programming Extreme Programming (XP)
e Refactor the system as needed to add new features

* Lots of “new” ideas
* That can be viewed separately

Agile Development Methodology

 Work in terms of sprints
* Each sprint in 1-2 week of work
 Each sprint adds features to the code

* Meet frequently to discuss progress
* Weekly meeting after a sprint
 SCRUM extension => daily meetings e
* Continuous integration = | =

Agile
Lifecycl

* Each sprint is its own cycle
* Requirements, specifications, design, coding, testing

Lollipop (Balloon) Model of Development

* Agile development has its advantages (v
* BUT it can require frequent refactoring of the overall system o
 AND it assumes the software is done at some point

* We prefer a hybrid or compromise model
* Do complete requirements and specifications
* Decide on a software architecture Doud!
* Do a high-level design for that architecture @ o
* Then do agile development /
e But assume that development never stops

* We call this the lollipop or balloon model 4

==

Lollipop Development Model

Requirements Specifications High-Level Design

9/5/24 CSCI2340 Fall 2024 - Lecture 1

Feature Analysis

Testing

24

Software Tools

* Tools have been created to assist the developer
* To support underlying techniques that work
* This is a large part of what software engineering has done

* Tools have been developed for all phases and needs
e With different degrees of success

-
* Wide and expanding variety of tools out there D
* Each developer/company has their favorites o
* We will cover a subset

Course Overview

* This course will cover much of software engineering
* How to build large systems
* Techniques that have been developed - ISONYOU

Wantito Be:..

° It W!” cover the various phases $6FTWARE

* It will teach you how to create large systems A N3N |[N]==]=:
* By example and by doing

* It will give you experience with software tools
* And working in teams

* It will provide a foundation for research in the field

9/5/24 CSCI2340 Fall 2024 - Lecture 1 26

Tools We Will Use

IDE: Code Bubbles, VS Code, Eclipse, IntelliJ, ...
, GIT, SLACK, GITHUB
Team Organization: GITHUB

Teamwork: ZOOM

Design: UML editor
ant, maven, Gradle

Coding
Testing

Bug databases: GITHUB
Deployment: Docker
Visualization and understanding

Junit

Thread Viewer

Threadviews

Poverride public void rn0 {
br,

switch (run_event getEventType0) {
case THREAD_ADD

—~BumpRunManager § Thr eadData>get Thr eadstate)
@verride public getThreadstate O
¢ retwun thread_state; 3

Code Bubbles. m)[x|
=) e

Feedback ~

Options~

bt - run_event getThreadO;
i un
s et a0 o BadtThren
rconisis IR ¢ Bad TheadViews Threads Mode >getvalueA(-) TR
= bump_threads.clear O ride pustic setiauetint r,int © € T Tabelpdater
bump_threads . addA11 (thread_set); bt; ct view on th)
3 synchronized (busp_threads) ¢ H
& Hf e <ollr
break; busp_threads 51220) return mall;
case THREAD RENOVE bt = bup_threads. got(r) bunp
bt = run_event_getThreadO;
¢ 12 © ¢ i
- et renove &0 e buse
ized (unp_threads) ¢ return be. gedimne0
ad. renove GO); Threadshodel
e be germresstate0; H TR
break; X cnhreadO; +
case. THREAD_CHANGE case
T ype0;
bt 2 getRowCount () oL
] T acaenged: ThreadsTabte
paintComponent Gr
getactualTireadcint) =y
B T cadView§ Threads ModeT>getRowCount) e
@verride pubtic int getRouCon
{ return bump_threads.sizeO; } R e el Y
7 i Resource = | Line edubrown.cs.bubbles.bddUBddiThreadView javautilListsize
W The type BoppFontOption. FontChooser.Fr... BoppFontOption. 247|~ =
W The fisld BudaBubbleArea bottomcolor .. BudaBubbleArea &7 PRIVATE | Methods | Comments | Types | Fields i size()
W The methad getProperDock(Budaubbe)... BudaBubbleArea... | 1192 s =
W The field BudaBubbleLink.link_data s ne... |BudaBubbleLink. 76|~ Returns the number of elements in this
e Bubbs b BRI List, I this list contains more than
" Integer. WAX_VALUE elements, retums
Description JetPosiion(eiubrovwn.ccbubbles bump SumpConstants3- Integer. HAX VALUE.
T 10 clone the tree structure h Popup menu methods
T Fiee] '+ handlePopupMenugavaawt event MouseEvent) [+ Returns.
T thread Mouse handing methods {+] SPECTFIED 3
T ormat iniial < Popup ment bandiing casses -

4 unp_threads:

acdAT] Cthread_set)
12ed Qunp_threads) ¢

ads. renove D)

¢

4 unp_thr

<011 © >= bump_thr

£0 € retum bunp_threads si

4 Qunp_threads) {

(ump_threads)
p_threads. get (idx);

eads = new Arraylist<BunpThr

edubrown.cs bubbies bump.BumpRunManager

& opeopte
£, bubbles

[oLaunch Configurations

QUESTION: Why are you taking this course?

* To learn how to build large software systems
* To become a better programmer

* To become acquainted with modern software techniques

* To prepare to do research in software engineering
* Because it sounds like fun?

9/5/24 CSCI2340 Fall 2024 - Lecture 1 28

Course Mechanics

Web site kept up to date
* More or less

e Canvas for turning in assignments
e But little else

Programming assignment

Handed in and possibly graded

Evolving: done multiple times (requirements will change)
Should be coded as if it were a large, long-lived system
Should be coded to evolve as the course progresses

Will tolerate some lateness

 Class participation
* Group activities, feedback, questions
* Will tolerate some absences

Team project

https://www.cs.brown.edu/courses/cs234

IT IS ILLOGICAL TO ASK ANOTHER TO DO YOUR- HOMEWORK.

Collaboration

* This course is highly collaborative
* Project teams work together
* Programming is better when done collaboratively
* You don’t have to invent everything from scratch
* But you should still do your own work

e All collaboration must be identified and cited
e Qutside sources, libraries, Al, web pages
e Collaborators
 Citations should be part of the code

* Missing citations are a violation of academic integrity

Course Project

DESSERT MAIN cOURSE

“"DOING A PROJECT" PROJECT BASED LEARNING

* List of potential projects on the web site
* Google doc for commenting, expressing interest, asking questions
* Feel free to add comments, questions, express interest, ...
* Projects have different emphases
* Development, testing, feasibility, augmenting existing systemes, ...
» Software-engineering research oriented

 Soliciting new ideas through the weekend

* Google form for submitting on the web site
* What software would benefit society
* What software would you or your research lab like to have
* What software could be used to start a company
* What software do you want to modify or adapt
» Earlier is better (will probably require a back and forth)
* And I’m not around 24/7 on weekends

* Form for project preferences
* Available Monday, due Tuesday

Course Project

* Project team selection next week

| will choose project teams based on preferences
* Probably won’t satisfy everyone, but | will do my best

e Each team responsible for project from start to finish
* Initial team meeting in class next Thursday
* Target team size 6-10

 Weekly deadlines for project
* Include hand-ins, presentations, demo videos
e Or just where the project should be

 Weekly meetings of project teams
* I’ll try to attend occasionally if during the day

* Should be coded as if it were a large, long-lived system
e Grading based on code quality and extensibility

Research in Software Engineering
HENIRENSONSHTOIBHN
e Software engineering is an evolving field RESENRCH

* Much has been done

SORNNVARE
* Much remains to be done EM@HMEEB

* This course will offer starting points for potential research
* New research directions
 What is currently going on in the field
 What I've been doing over the past 10 years

BETTER

SOFTWARE

* Projects can be research oriented if you want BETTER
* Most of the suggested projects have a research feel
e But other projects are still welcome @

Do You Belong Here?

* If | asked you to write a system on your own that could:

* Simulate 100,000 objects interacting via gravity
With an XML file giving the initial configuration
Use a complex data structure (Oct-Trees) [NlogN vs N?]
Handling collisions; using a separate package to do 3D output
Using multiple threads

* Would it be easy for you?
* Oh, give me a week or two

* Would you feel confident that you could do it in time?
* You can identify the classes needed and define a high-level design quickly
* Have everything working in 3-4 weeks

* Would you feel overwhelmed?

Alternative Problem (for Web developers)

* | have a large collection geolocated tweets from USA
e Each with zip code, district, state, author, tweet, time, ...

* Create an application to let users query & visualize these
* Query by keyword, time range, ...
e Sample the results
* Refine the queries to get better results
* View the data on a map over time

L g
 Download CSV result for further analysis & l
* Would this be in your current skill set? \{ 5 M 4
* Front end and back end
 How long would it take you?

Why Do We Consider These Problems

* We will cover high-level design

* We will cover detailed design only briefly

* Selecting classes, methods, fields, ...
* How to code methods

* Class design (OO patterns, ...)
* We assume you know this (32/134)

* If writing the detailed stuff is difficult
* You should learn this first (take 32/134)

* We don’t want to drag down the project teams

Getting Help

* Office Hours
* Monday 1-3
e ZOOM: 781-445-5513
* Exceptions should be noted in calendar

o Thur‘sday 11_12:30 aQGAGisyourbestsourceoffun.
* CIT 403

* Open-office (8-3 via Zoom or in my office)
* Probably tell from my status (sign or web page)
* Note there are no TAs for this course

* Use your project teams for project help
* There will be minimal grading (this is a graduate course)

Questions on the Course

Exercise: Project discussion

* Project Discussion

* Questions
* What types of projects are you interested in
 What would you like to get out of the project
* What do you see as your role in the project

* Let's go round the room and get feedback

shutterst.ck

Homework

* Download and install Code Bubbles
* Need to install Eclipse first if not already there

* Run Code Bubbles on a project
* Existing Eclipse workspace
* Existing Java project
* New code (hello world, nim)

* Relate experiences in a canvas hand-in
* Due 9/12 (one week)

Recap

* Project ideas due by the end of the day Saturday
* Will be vetted, might ask follow-up questions
* Projects should be approved by Sunday
* Review project discussion document

* Project preference forms out on Monday
* Due by the 5:00 pm on Tuesday OU

. IN CASE Y
* Further Read
L°JrSor::nef\illelPs.gSoftware Engineering MISSED IT

* Look at Chapter one.
e Textbook chapters 1 and 2

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnw1ZmFsbDE1ZXxneDo1NzI4MDBiZWVlN2IzYmY5
https://www.cs.brown.edu/people/spr/complexsoftwarebook.pdf

