
Course
Introduction

CSCI2340: (Graduate) Software Engineering
Steven P. Reiss

9/5/24 CSCI2340 Fall 2024 - Lecture 1 1

What is Software Engineering

• The systematic application of engineering approaches to
the development of large software systems.
• The application of a systematic, disciplined, computable

approach for the development, operation, and maintenance
of large software systems.
• A process of analyzing user requirements and then

designing, building, and testing a software application which
will satisfy those requirements.

9/5/24 CSCI2340 Fall 2024 - Lecture 1 2

What Has It Accomplished

• Size of software systems has increased
• By about a factor of 10 each decade

• History
• 1970: Box of punch cards (2000), large program: 10,000 LOS

• Compile time in lines per minute (10-1000)
• 1980: 5M disk was large, large program: 100,000
• 1990: 40M disk was std, large program: 1,000,000
• 2000: 10G disk was std, large program: 10,000,000
• 2010: 1T disk is std, large program: 50,000,000 (windows)
• 2020: 10T disk is std, large program: 2,000,000,000 (google web)

• 100,000,000 in a car

9/5/24 CSCI2340 Fall 2024 - Lecture 1 3

Question: What is YOUR Largest System

9/5/24 CSCI2340 Fall 2024 - Lecture 1 4

• 1,000 - 2,000 lines (CS15/18)
• You shouldn’t be here

• 10,000 - 20,000 lines (CS32)
• Probably a bit less, but designed for

• 200,000 lines (Internship)
• 2,000,000 lines
• Larger
• How much of this did you understand

Software Engineering

• Has focused on how to build large software systems
• How to build software at scale

• Has developed tools, techniques & frameworks
• For building software at scale

• Attempts to address the various problems
• When building software at scale

• Let’s get an overview of what all this means

9/5/24 CSCI2340 Fall 2024 - Lecture 1 5

What is a Large Software System

• Could be measured in lines of code or source
• But this varies over time, language, etc.
• Still the only meaningful measure

• A system that is too complex for one person to understand
• A system that takes more than K man-years to build
• K = 10?
• Mythical Man Month

9/5/24 CSCI2340 Fall 2024 - Lecture 1 6

Large Software System Characteristics

• Require multiple developers
• Long-lived
• Evolve, not built all at once
• Distributed (client-server, web-based, multiple servers)
• Concurrent (multithreaded, multiprocess)
• Multiple languages
• Prone to failure
• Guaranteed to have bugs
• Often 1000’s

9/5/24 CSCI2340 Fall 2024 - Lecture 1 7

Software Engineering at Scale

• How to build large systems
• Multiple person development
• Long-lived
• Evolve, not build at once
• Distributed
• Concurrent
• Avoiding failure

9/5/24 CSCI2340 Fall 2024 - Lecture 1 8

Software Engineering at Scale

• Importance of Maintenance
• Multiple person development
• Long-lived
• Evolve, not build at once
• Distributed
• Concurrent
• Avoiding failure

9/5/24 CSCI2340 Fall 2024 - Lecture 1 9

Software Engineering at Scale

• Importance of Managing Risk
• Multiple person development
• Long-lived
• Evolve, not build at once
• Distributed
• Concurrent
• Avoiding failure

9/5/24 CSCI2340 Fall 2024 - Lecture 1 10

Traditional Software Engineering

9/5/24 CSCI2340 Fall 2024 - Lecture 1 11

Software Engineering at Scale: Requirements

• Determine what the user needs
• Define the problem to be solved
• Done over time
• Evolving
•More user-oriented

9/5/24 CSCI2340 Fall 2024 - Lecture 1 12

Software Engineering at Scale: Specifications

• Determine what should be built
• Feature-based specification
• Risk-based specification
•Minimal Viable Product concept
• Include more than just functionality
• Safety, performance, reliability
• Quality, maintainability
• Documentation

9/5/24 CSCI2340 Fall 2024 - Lecture 1 13

Software Engineering at Scale: Design
• Design what will be built
• Software Architectures
• High-level design using interfaces
• Object-oriented design
• Risk-based design
• Team-based design
• Design for maintenance
• User interface design
• Distributed/concurrent system design

9/5/24 CSCI2340 Fall 2024 - Lecture 1 14

Software Engineering at Scale: Coding

• Coding for risk
• Coding for maintenance
• Coding for teams
• Coding user interfaces
• Coding for security
• Coding for privacy

9/5/24 CSCI2340 Fall 2024 - Lecture 1 15

Software Engineering at Scale:
 Verification and Validation

• Debugging
• Testing Strategies
• Static Analysis
• Contracts
• Type Safety
•Model Checking

9/5/24 CSCI2340 Fall 2024 - Lecture 1 16

Software Engineering at Scale: Maintenance

• Keeping the system running
• As hardware and languages evolve
• Minimizing down time

• Fixing problems (bugs)
• Adding features (evolution)
•Making the system more robust
•Making the system more secure
•Making the system …

9/5/24 CSCI2340 Fall 2024 - Lecture 1 17

All Software Development is Maintenance

• Systems are too big to write all at once
• Requirements will have changed by the time it is done
• Systems evolve rather than being created

• Too much demand for change
• Competing products, upgraded OS, platforms

• User’s expectations are high
• Expect software to be perfect
• Expect software to evolve
• Expect a better user interface
• Expect new features and UIs continually

9/5/24 CSCI2340 Fall 2024 - Lecture 1 18

All Software Development is Maintenance
• Many software projects start with existing code
• Convert that code to a new purpose
• Extend that code for new functionality
• Rewrite the code so it remains usable

• Most software is developed from an existing base
• Templates or skeletons for various purposes
• Based on prior systems
• As extensions of existing systems

• Most software makes extensive use of libraries & frameworks
• Don’t write something that has been written before
• In-house, open-source, purchased
• And existing systems

9/5/24 CSCI2340 Fall 2024 - Lecture 1 19

Agile Development

• Realize that most development is maintenance
• Develop a software process to take this into account

• Goal is to provide an early working system
• To get feedback from users to direct future development
• To test the system to ensure it is robust
• To provide satisfaction to the developers
• And then extend that early system into a complete system

• Attempted to completely redo software development
• But more evolutionary then revolutionary

9/5/24 CSCI2340 Fall 2024 - Lecture 1 20

Extreme Programming

• Agile development derived from Extreme Programming (XP)
• Develop in short bursts
• Test-first development
• Do specifications and requirements in terms of stories
• Pair programming
• Refactor the system as needed to add new features

• Lots of “new” ideas
• That can be viewed separately

9/5/24 CSCI2340 Fall 2024 - Lecture 1 21

Agile Development Methodology

•Work in terms of sprints
• Each sprint in 1-2 week of work
• Each sprint adds features to the code

•Meet frequently to discuss progress
• Weekly meeting after a sprint
• SCRUM extension => daily meetings
• Continuous integration

• Each sprint is its own cycle
• Requirements, specifications, design, coding, testing

9/5/24 CSCI2340 Fall 2024 - Lecture 1 22

Lollipop (Balloon) Model of Development

• Agile development has its advantages
• BUT it can require frequent refactoring of the overall system
• AND it assumes the software is done at some point

• We prefer a hybrid or compromise model
• Do complete requirements and specifications
• Decide on a software architecture
• Do a high-level design for that architecture
• Then do agile development
• But assume that development never stops

• We call this the lollipop or balloon model

9/5/24 CSCI2340 Fall 2024 - Lecture 1 23

Lollipop Development Model

9/5/24 CSCI2340 Fall 2024 - Lecture 1 24

Requirements Specifications High-Level Design Design

Coding

Testing

Feature Analysis

Software Tools

• Tools have been created to assist the developer
• To support underlying techniques that work
• This is a large part of what software engineering has done

• Tools have been developed for all phases and needs
• With different degrees of success

•Wide and expanding variety of tools out there
• Each developer/company has their favorites
• We will cover a subset

9/5/24 CSCI2340 Fall 2024 - Lecture 1 25

Course Overview

• This course will cover much of software engineering
• How to build large systems
• Techniques that have been developed

• It will cover the various phases
• It will teach you how to create large systems
• By example and by doing

• It will give you experience with software tools
• And working in teams

• It will provide a foundation for research in the field

9/5/24 CSCI2340 Fall 2024 - Lecture 1 26

Tools We Will Use
• IDE: Code Bubbles, VS Code, Eclipse, IntelliJ, …
• Teamwork: ZOOM, GIT, SLACK, GITHUB
• Team Organization: GITHUB
• Design: UML editor
• Coding: ant, maven, Gradle
• Testing: Junit
• Bug databases: GITHUB
• Deployment: Docker
• Visualization and understanding

9/5/24 CSCI2340 Fall 2024 - Lecture 1 27

QUESTION: Why are you taking this course?

• To learn how to build large software systems
• To become a better programmer
• To become acquainted with modern software techniques
• To prepare to do research in software engineering
• Because it sounds like fun?

9/5/24 CSCI2340 Fall 2024 - Lecture 1 28

Course Mechanics
• Web site kept up to date

• More or less
• Canvas for turning in assignments

• But little else

• Programming assignment
• Handed in and possibly graded
• Evolving: done multiple times (requirements will change)
• Should be coded as if it were a large, long-lived system
• Should be coded to evolve as the course progresses
• Will tolerate some lateness

• Class participation
• Group activities, feedback, questions
• Will tolerate some absences

• Team project

9/5/24 CSCI2340 Fall 2024 - Lecture 1 29

https://www.cs.brown.edu/courses/cs234

Collaboration

• This course is highly collaborative
• Project teams work together
• Programming is better when done collaboratively
• You don’t have to invent everything from scratch
• But you should still do your own work

• All collaboration must be identified and cited
• Outside sources, libraries, AI, web pages
• Collaborators
• Citations should be part of the code

• Missing citations are a violation of academic integrity

9/5/24 CSCI2340 Fall 2024 - Lecture 1 30

Course Project
• List of potential projects on the web site

• Google doc for commenting, expressing interest, asking questions
• Feel free to add comments, questions, express interest, …

• Projects have different emphases
• Development, testing, feasibility, augmenting existing systems, …

• Software-engineering research oriented
• Soliciting new ideas through the weekend

• Google form for submitting on the web site
• What software would benefit society
• What software would you or your research lab like to have
• What software could be used to start a company
• What software do you want to modify or adapt

• Earlier is better (will probably require a back and forth)
• And I’m not around 24/7 on weekends

• Form for project preferences
• Available Monday, due Tuesday

9/5/24 CSCI2340 Fall 2024 - Lecture 1 31

Course Project
• Project team selection next week

• I will choose project teams based on preferences
• Probably won’t satisfy everyone, but I will do my best

• Each team responsible for project from start to finish
• Initial team meeting in class next Thursday
• Target team size 6-10

• Weekly deadlines for project
• Include hand-ins, presentations, demo videos
• Or just where the project should be

• Weekly meetings of project teams
• I’ll try to attend occasionally if during the day

• Should be coded as if it were a large, long-lived system
• Grading based on code quality and extensibility

9/5/24 CSCI2340 Fall 2024 - Lecture 1 32

Research in Software Engineering

• Software engineering is an evolving field
• Much has been done
• Much remains to be done

• This course will offer starting points for potential research
• New research directions
• What is currently going on in the field
• What I’ve been doing over the past 10 years

• Projects can be research oriented if you want
• Most of the suggested projects have a research feel
• But other projects are still welcome

9/5/24 CSCI2340 Fall 2024 - Lecture 1 33

Do You Belong Here?
• If I asked you to write a system on your own that could:
• Simulate 100,000 objects interacting via gravity
• With an XML file giving the initial configuration
• Use a complex data structure (Oct-Trees) [NlogN vs N2]
• Handling collisions; using a separate package to do 3D output
• Using multiple threads

• Would it be easy for you?
• Oh, give me a week or two

• Would you feel confident that you could do it in time?
• You can identify the classes needed and define a high-level design quickly
• Have everything working in 3-4 weeks

• Would you feel overwhelmed?

9/5/24 CSCI2340 Fall 2024 - Lecture 1 34

Alternative Problem (for Web developers)
• I have a large collection geolocated tweets from USA
• Each with zip code, district, state, author, tweet, time, …

• Create an application to let users query & visualize these
• Query by keyword, time range, …
• Sample the results
• Refine the queries to get better results
• View the data on a map over time
• Download CSV result for further analysis

• Would this be in your current skill set?
• Front end and back end
• How long would it take you?

9/5/24 CSCI2340 Fall 2024 - Lecture 1 35

Why Do We Consider These Problems

•We will cover high-level design
•We will cover detailed design only briefly
• Selecting classes, methods, fields, …
• How to code methods
• Class design (OO patterns, …)
• We assume you know this (32/134)

• If writing the detailed stuff is difficult
• You should learn this first (take 32/134)

•We don’t want to drag down the project teams

9/5/24 CSCI2340 Fall 2024 - Lecture 1 36

Getting Help

• Office Hours
• Monday 1-3

• ZOOM: 781-445-5513
• Exceptions should be noted in calendar

• Thursday 11-12:30
• CIT 403

• Open-office (8-3 via Zoom or in my office)
• Probably tell from my status (sign or web page)

• Note there are no TAs for this course
• Use your project teams for project help
• There will be minimal grading (this is a graduate course)

9/5/24 CSCI2340 Fall 2024 - Lecture 1 37

Questions on the Course

9/5/24 CSCI2340 Fall 2024 - Lecture 1 38

Exercise: Project discussion

• Project Discussion
• Questions
• What types of projects are you interested in
• What would you like to get out of the project
• What do you see as your role in the project

• Let's go round the room and get feedback

9/5/24 CSCI2340 Fall 2024 - Lecture 1 39

Homework

• Download and install Code Bubbles
• Need to install Eclipse first if not already there

• Run Code Bubbles on a project
• Existing Eclipse workspace
• Existing Java project
• New code (hello world, nim)

• Relate experiences in a canvas hand-in
• Due 9/12 (one week)

9/5/24 CSCI2340 Fall 2024 - Lecture 1 40

Recap

• Project ideas due by the end of the day Saturday
• Will be vetted, might ask follow-up questions
• Projects should be approved by Sunday
• Review project discussion document

• Project preference forms out on Monday
• Due by the 5:00 pm on Tuesday

• Further Reading
• Sommerville's Software Engineering
• Look at Chapter one.

• Textbook chapters 1 and 2

9/5/24 CSCI2340 Fall 2024 - Lecture 1 41

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnw1ZmFsbDE1ZXxneDo1NzI4MDBiZWVlN2IzYmY5
https://www.cs.brown.edu/people/spr/complexsoftwarebook.pdf

