ARCHITECTURE

WANT TO KNOW THE BEST SOFTWARE ARCHiTECTURE? ;
From now on, y'all need to

make sure you pay attention
to the integration layer in
Pangasca order to map the domains
300M years age to the interfaces within the
virtual framework.

& ¥oR
LOOK AT THE EVOLUTION OF THE EARTH. UI/UX

Who left the Software
Architecture guide
within the reach of

the new executive?

paTAC. APt Dcacke| [paTAC, AP DcAcHE

nowadays

Daniel Stori {turnoff.us}

BUSINESS
LOGIC

MONKEYUSER.COM



Design

* Requirements tell us what users NEED built
* Specifications tells us WHAT to build




Design Decisions

* Design involves lots of decisions
* Some are big (overall structure); Some are small (hash or tree map)

* Most do not matter
e Anything can be made to work; anything can be redone

e But each contributes to making the code better
* More maintainable

* Smaller and simpler

* Less subject to risk

 Easier to work on as a team

Architecture = Design Decisions

9/15/24 CSCI2340 - Lecture 4



Making Design Decisions

* What is the effect on the system
* Understand the consequences, implications, ...
 How they fit with the solution, now and in the future
e Ease of implementation
* Simplicity of the result

* Size of the code Mind 2 fon oot an

« Complexity of the code AN

e Complexity of interaction
* Ease of understanding

* Consistency




What Makes a Good Designer

* Experience
* Read lots of designs, understand what others have done
* As you use a system, think about it might be designed
e Understand what works and what doesn’t
 Remember your past decisions (and their effects)

* Understand Design Patterns
* Design patterns are a collection of standard working ways
* Need to understand when they should be used




Decisions are Made at All Levels

* What construct to use (for or while)
* What data structure to use (HashMap or TreeMap)
* How to split into methods

32, 38 /000
A%A "‘m

[a%]-[a8 A / srchitectures

) ol i 4 Frameworks
a\n =] ‘\ﬂ
2E[E /\ Application level
P B PG LB |-|aE
NAE A System level
= a:l &:;
S[Ha=Ha® Ha¥) Enterprise level
- a2 Y a8 0

Globalindustry level

[Fal ]

l:alb
]>




Software Architecture

,,,,,

e Software architecture refers to the fundamental structures of
a software system and the discipline of creating such
structures and systems. Each structure comprises software

elements, relations among them, and properties of both
elements and relations.

* Architecture is the fundamental organization of a system
embodied in its components, their relationships to each
other, and to the environment, and the principles quiding its




Software Architecture

* An architecture is the set of significant decisions about the
organization of a software system, the selection of structural
elements and their interfaces by which the system is
composed, together with their behavior as specified in the
collaborations among those elements, the composition of
these elements into progressively larger subsystems, and the
architectural style that guides this organization -- these
elements and their interfaces, their collaborations, and their
composition. —Kruchten (2003) The Rational Unified Process:




Software Architecture

turalc

el

* The overall view of how the system works
* When the system is complex enough to warrant

* Typically expressed as boxes and arrows
* Boxes represent system components

* Arrows represent communication between components
* Can be interpreted in various ways
e Can involve processing as well as pure communication

e Both are important and central to the architecture




Consider a Web Browser

e Specifications
* Display a web page
* Download the contents (w/ CSS, JS, images, ...)

e Layout the contents
* Display the contents

* Handle interactions (built-in and JS)
* Manage downloads and bandwidth
* Manage tabs & multiple browser windows




EXERCISE

* Consider your favorite browser
* How does it work internally?
* What are the basic components?
* How are they connected?
* What are the key technical problems?
* How to take advantage of multiple cores?

* How might the components be organized?
* How would you build a new web browser?




User Interface

EXERCISE Discussion ‘

Browser engine

h |

* What are the components L T \'
* What are the key parts [ | UJ

™
: JavaScript
Networking | [ A J { Ul Backend ] \ )
4

2Ud515194 e1eQ

 What are the difficult parts

Attachment _7/ Render /L. Painting -b< Display )
Tree




Browser Architecture

DOM
Storage

‘ INTE
CO””%

Networking Render Engine

Interactions




Architectural Patterns

* There is a relatively small set of basic architectures
e Architectural design patterns
* Like house architectures (ranch, split-level, cape, colonial, ...)
* Most actual systems are a combination of these

* A good system designer will understand the options

 What they are
* How they might be implemented




Source code

Pipe and Filter ;

<

* UNIX shell pipes as a model )
* Filters are processing units [ ]

Generatlon
[

v

Source code

Pluggable patch generator

______________________________________________

eneration

mmmmmmmmmm




Generalized P&F: Streammg Architectures

mmmmmmmmmmmmmmmmmmmm

e Stream-based databases

Y

e Stellar Computer (graphics)

. m- N

-~ 3

Q— @,\




The 7 Layers of OSI ser interfae,

Transmit

Layered System

Application (Layer 7)
Presentation (Layer 6) ;:" “ Biarrai |
: o |
.
| ,
* Hub and Spokes Model

Physical (Layer 1)

—-- Physical Link sy

Java™ 2 Platform, Standard Edition v 1.4

i Development |ay3 Compiler lava Debu I Javadoc I |PDA
Weed Lily Tools & APls P gger j

Thyme

Violet

DETRY

Utilities

Balm

/
g
7
7
2
/
/

Windows



Character Processing

‘ Tagger

Repository Architectures —

I Spell Checker

Affect
K—  intecpeetation

Textese Processing

* Shared data structure
* Blackboard, data store, database
e Various components access and update that structure
e Often with notifications on change

e Communication done via the central structure
* Classic Example

* Programming Environment — commonality is the source code
* PECAN — AST-based

N Ll
|

Metaphor Module Wordnet
Processing

* Eclipse and Idea are similar if not expanded e |l ety I
* Al blackboard systems s S o B
* Other ExXamples S <oy = = = -




DSL Examples

Interpreters

Database Manipulation
D R G N
* Domain-Specific Languages Fberwe | Object Relaional Mapping
» Define a language for writing the implementation attern Matching
« Write the actual system in that language s
* Interpret (compile) to run the system
e Language often is just a library
* Classic Examples User Knowledge

 Scientific Computing Libraries and DSLs e

e Systems for processing big data %——ﬁ ometeaiz=y [

* Python-based scripting
UX Professiconal ’% 2 ; Pro%mer
|

* Also computer vision, machine learning
* Rule-based systems




Process Control Architectures

|
Qualitative Processes |
Initialisation Module | Qualitative Processes Control Modules
: a ; c
a ; > 3 : —
Processes Activation | | £ Ackie Qb+ Vaiebies Qualitative
A Mutator 2 = —» = > Physics
T > Context a Triggered Context Events | Simulation Engine
* Mostly used in lo mbedde
| =R | ° |
| f + QP Events
| Basic Events QP Events
oP z Modeller Modeller
[]
Definiton |
e Control loop with feedback i IF
| =2 z
; 53 8 §
w w
' i 55
| 3 2§
: £ 3
 7404@fred3 DYVISE Summa !
CPU l
CPU LOAD % CPU USAGE
CPU Utilization

TOTAL 263.1 3077.6
u.brown. cs.cs032.solar.SolarCo.

brown.cs.cs032.solardraw.Sol.

. brown. cs.cs0! olara..
. brown. cs.cs0!
brown. cs.cs0:
.brown. cs. ¢s0;
.brown. cs.csO.
brown.cs.cs0:
brown.cs.cs0:
_brown. cs.cs0.
brown. cs.cs0:
rown. cs.cso0:
.brown. cs.cs032.
brown.cs.cs0:

Name Base Time | Base% v Total Time | Total% ExecTime | Tm/Ex(ms) | |
0.68 | 8.00 | 0.0 0.00 | 00
0.00 00
17
0
0

S oo oo sea

=)

=)

18/318/8

.brown. cs.cs032.
brown. cs.cs0. SolarC
brown.cs.cs032.solar.SolarGr.
_brown. cs.cs032.solar.50larsys.
_brown. cs.cs032.solardraw.Sol...
. brown. cs.cs032.solardraw.Sol..
.brown. cs.ivy. xmlLIwXmI@getA...
.brown. cs.cs032.solar.SolarGr...
brown.cs.cs032. solar.SolarGr.
brown.cs.cs032.solar.SolarBa.
_brown. cs.cs032.solar.SolarGr...
brown. cs.cs032.solar.SolarGr...
rown.cs.cs032.solar.Solarsys...
2du.brown.cs.cs032.s0lar.Solarsys..
2du.brown.cs.cs032.solar.SolarSys.
edu.brown.cs.cs032 solar.SolarBa.
edu.brown.cs.cs032.solar.SolarGr...
sl forown- solar.Splargr...

=iy

2

sisls|slsis|slelslgiglsls

318/8|




Client-Server Distributed Processing

* Server acts as a master

* Clients talk to the master (not to each other)

* Message-based communication

 State can be global or distributed [~
2 - L

* Classic Example
* Computer Games

e Other Examples

* Web-based applications /




Message-Based Distributed Processing

=

» Set of Processes communicating via messages ﬁ
=

» Messages can be process-to-process = —

* More general is a central message server and broadcast messages

* Classic Example
* FIELD environment

ormserver p*

e Other Examples
* CORBA-based computing

90090000

\_/

. /e
[heapview | [ ioview | [ perfview | ( xrefdb )/i --(Pas scan




Plug-in Architectures

Utilities

* Core + Extensions with dynamic plug-ins
* Facilities to dynamically load and integrate plug-in code
* Done at run time, not compile time

* Extension points
* Allow plug-ins to augment the Ul, other capabilities of core
* Allow core to provide notifications to the plug-ins S

* Plug-ins can invoke the core system i (e
* Register callbacks, do operations |

* Examples

Rich Client Platform

eptonal

Rich Client Piatform
Bbase

N ADE e e W W S e . e . -




Microservice Architectures

* Application built as a collection of services
* Services can be implemented independently
* Services can be reused by multiple applications
e Services are loosely coupled

* Database-oriented i
: = 2
* Flexible, scalable, team-oriented : N
- e £ R
* Examples oy (e -
;% ’’’’’ o =,




Browser Architecture

DOM
Storage

‘ INTE
Pipe & Filter Controller

Layered System

Repository

Plug-in Interactions

Networking Render Engine




Heterogeneous Architectures

Code Editing
Text Editing

Eclipse .
Documentation

* Most complex systems employ

Programmer’s Notebook

multiple architectures ° i

Educational Extensions

e Combinations of the above Name Search

Utility Windows

Debugging




Software Architecture

* Understanding these (and other) high-level models

e Understanding when they are (and are not) appropriate
* These are essentially high-level design patterns

» Design patterns always tell WHEN they are appropriate BSCIVELE

e Should also indicate when NOT appropriate Architecture

Patterns
* When they make the system more complex |
* When they make the system harder to maintain

* Understanding what best applies to your problem

' ‘ls‘, Sl ul —

¥ g " s 4
i l.nx‘ P !
Mark Richards



Choosing a Software Architecture

Software Architecture Styles

* Decide on a set of basic high-level components
* What is the basic functionality
* Emphasize data over computation
* Handling the specifications

* Determine which architectures are appropriate
* Based on the components & their interactions --:§ B ==

Space-Based Architecture

e Account for constraints




3
Other Things to Consider ;

* Team-based Designs -
* An architecture that allows an easy split among team members
* Having people work on individual components is easier
e Each person should have a well-defined component (or set thereof)
 Number of component correlates with team size
* Risk-based Designs
e Understanding what is difficult, unknown, etc.
* |solating and addressing risks




Research in Software Architectures

* Automatic redesign based on environmental deviations
* Neural-net based architectures (using LLMs)

* Understanding design decisions




HOMEWORK

* If you don’t have a personal GitHub account
* Create one

e Start thinking about coding the assignment
e Use Code Bubbles for Java/node/dart if desired
* Initial implementation due 2/13 (one week)
* We will discuss coding next time




PROJECT

* Decide on a project name

* Discuss architectures at your next project meeting
* Develop a proposal

* Continue working on specifications
e Should have a good high-level idea of what the team will be doing
* Should have a complete high-level view
* Details can be filled in later




Further Reading

* Introduction to Software Architecture

* Classic paper introducing the field
* Textbook — Chapter 5



https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

