
Basic Coding
Techniques

CSCI2340: (Graduate) Software Engineering
Steven P. Reiss

9/16/24 CSCI2340 - Lecture 5 1

Getting Ready To Code

•We’re going to be doing design for a while
• But will eventually start coding
• And you should be coding the homework assignment
• And you are starting to work on the project
• If you need to do any prototyping

• This lecture is preparation for that

9/16/24 CSCI2340 - Lecture 5 2

GIT

•We need support for joint projects
• Source code control, version management
• GIT is today’s standard (sccs, rcs, svn, perforce, …)

• GIT provides a flexible, adaptable platform
• Distributed framework
• Even for one person development

• Allows lots of collaboration
• Supports complex branch and merge operations
• Provides the safety of older versions and going back
• Use if even for one person development

9/16/24 CSCI2340 - Lecture 5 3

GIT Basic Concepts

• Repository
• Central location for all files
• Can be GitHub, local, or anywhere accessible
• GIT supports multiple repositories

• Each user has their own repository
• One is designated the master or head

• Can be changed if needed

• Individuals clone (check out) the repository
• They get their own copy of all the files
• Comes with a link back to the cloned repository
• But it is a repository in its own right

9/16/24 CSCI2340 - Lecture 5 4

GIT Basic Concepts
• Individuals can edit their copies
• Edit individual files
• Create private files & directories

• .gitignore file describes what is private
• Create new public files & directories

• But you must tell git using git add
• Remove files & directories

• But you should tell git using git rm
• Status operation to check what has changed
• Commit operation to commit changes locally

• Puts the changes into the local repository
• This allows going back, but doesn’t change the global repo

9/16/24 CSCI2340 - Lecture 5 5

GIT Basic Concepts: Push and Pull

• Push a committed local repo to the global repo
• Updates the global repo with changes
• Creates new version of the global repo
• Makes changes visible to others

• Pull global repo into local repo
• Updates local files with global changes

• What happens if there are conflicts
• Merge changes – doesn’t always work
• Can require manual intervention
• Commit the merge code

9/16/24 CSCI2340 - Lecture 5 6

GIT Basic Concepts: Branches

• Sometimes you need to work independently
• Don’t want all others to see your changes
• Don’t want to see changes of others (temporarily)
• But still want to save things globally

• Branches provide such a means
• Branches are separate versions of the system

• Independently developed from the main repository
• But store in the repository

• Branches can then be merged
• With each other or with the main branch

• We’ll cover these in more detail later
• Today, continuous integration with a single branch is often used

9/16/24 CSCI2340 - Lecture 5 7

GIT Complexities
• Editing and merge conflicts

• What if two people make changes to the same file
• What if one person deletes a file someone else uses
• You want to avoid this where possible – requires additional work

• This can happen with or without branching
• Repositories can be combined in various ways

• Merge – merge the code from the two branches (safest; recommended)
• But can require manual intervention and create corrupted files

• Rebase – apply your changes to current version if possible
• Stash and replace (removes all local changes) (git restore)
• We’ll get into these in more detail later

• You should read up on these and decide what to use
• As a project team

• Time at end of class to set up GIT for your project

9/16/24 CSCI2340 - Lecture 5 8

Coding Style
• Most frustrating part of collaboration & using open-source software
• Coding style is essential
• Helps with maintenance
• Helps with understanding
• Helps to make the code readable to everyone
• Open source should be open
• Consistency in a large project

• Much easier to work on code with known conventions
• WRITE CODE SO IT CAN BE READ BY PEOPLE
• Not so it can be executed
• For yourself, you team, and posterity
• Be proud of your code

9/16/24 CSCI2340 - Lecture 5 9

Coding Style Goals
• Readability

• Looks nice; easy to read; spaced appropriately
• Easy to skim to get an overview of the code
• Easy to find things (non-linear readability)

• Looking at an identifier
• Easy to know what it is
• Easy to know where it is defined

• Looking at code
• One should understand its structure
• Without having to read in detail

• Simplify debugging & maintenance
• Avoiding name conflicts
• Being able to find name in source
• Make changes easier
• Keep things local

9/16/24 CSCI2340 - Lecture 5 10

Code Style Components

• Naming Conventions
• Ordering Conventions
• Coding Conventions
• Formatting Conventions
• File Organization

9/18/24 CSCI2340 - Lecture 5 11

Naming Conventions
• Goal:

• Distinguish different types of names
• Understand what the name means directly
• Understand where to look for the definition
• Understanding the scope of a name

• My coding style (not what you need to use)
• Mainly for Java, adapted for other languages

• Fields (static variables)
• All lowercase, contain an underscore, meaningful
• Always private (or protected) to avoid naming conflicts

• Local Variables (and parameters)
• All lowercase, no underscore
• Short names okay if used within a few lines
• Otherwise use meaningful names

9/16/24 CSCI2340 - Lecture 5 12

Naming Conventions

• Constants (final static fields)
• All uppercase, underscores separate words
• Meaningful names
• Start with package name if external

•Methods
• Camel case names starting with lowercase
• Can be single word (e.g., process), but this is unusual

• Meaningful names
• Access methods start with get, set, or is
• Factory methods start with create or new

9/16/24 CSCI2340 - Lecture 5 13

Naming Conventions
• Types (classes, interfaces, enums,…)
• Camel case starting with uppercase (UpperCamel)
• Outer types should start with package name
• External (visible) inner types should start with package name
• Single outer type per file

• Packages
• edu.brown.cs.user.project.<package>
• edu.brown.cs.project.<package>
• Should always be there

• Imports
• Use single class imports (not on-demand) [fix imports command]
• Use static imports only where names will remain unambiguous

9/16/24 CSCI2340 - Lecture 5 14

Naming Conventions
• Different language can require different conventions

• May be recommended by the language
• May be required by the language (dart _xx for private)
• Adapt your coding conventions to the language as needed
• Compromise on multi-lingual projects

• When modifying existing code, use its conventions
• Augmenting, adding a feature
• Patching, bug-fixing
• You first should learn the existing code conventions

• When importing external code
• Change to your conventions
• But add citation to the original (copyright)

• Project should have a common set of naming conventions
• Decide on these before you start coding (can use or adapt existing standards)
• Write them down so all members of team are consistent
• Put this in your repo

9/16/24 CSCI2340 - Lecture 5 15

Ordering Conventions
• Goal: Make it easy to find things in a file
• Within a file (my Java conventions as an example)

• Header comments – name, purpose, author(s), copyright(s)
• Should only have a single purpose (we’ll get to that in class design)
• Include names of all authors (add as needed)
• Always include a copyright statement (even if simple or a reference)

• Main method if present
• Other top-level static factory methods
• Field definitions (private and then static private)
• Constructors and self-factory methods
• Access methods
• Public methods
• Private methods
• Inner classes (comment at end of class)
• Tail comment -- note the end of the file

9/16/24 CSCI2340 - Lecture 5 16

Ordering Conventions

• Not as strict as naming conventions
• Some slack allowed
• Private methods related only to a public method
• Inner classes related only to a single method
• Factory methods for inner classes might be treated as constructors
• Static methods might come earlier

9/16/24 CSCI2340 - Lecture 5 17

Ordering Conventions
• Different languages can use different conventions
• Some might recommend them
• Some might require them (define before use)

• When modifying existing code, use its conventions
• Augmenting, adding a feature
• Patching, bug-fixing
• You should learn the existing code conventions

• When adapting existing code, convert to your conventions
• Project should use a common set of ordering conventions
• Decide on these before you start coding
• Write them down & put into your repo

9/16/24 CSCI2340 - Lecture 5 18

Coding Conventions
• Principle of least privilege (keep things local)

• Make things private if possible
• Make things public only if necessary
• Fields should be private; protected at worst

• Never accessed outside of a class (or subclass) directly
• Javadoc (or equivalent) for all public and protected items

• Non-trivial descriptions
• Minimize public interfaces (keep small and few)

• Protected versus package-protected
• Methods should fit on one “page”
• Inner classes, static inner classes, and outer classes
• Hierarchies as inner classes versus outer classes
• Coding conventions depend a lot on the language
• We’ll cover coding conventions in more detail later

9/16/24 CSCI2340 - Lecture 5 19

Formatting
• Avoid complex conditions and constructs

• Code should be obvious
• Break up complex conditions into logical units
• Parenthesize appropriately (X and Y or Z)

• Code should fit on the line
• Maximum line length 80-100 characters
• Split lines, or better yet, rewrite to avoid

• Use spaces, blank lines, and comments to enhance readability
• And do so liberally
• Sentences and paragraphs

• Consistent indentation
• 3 or 4 spaces, not 2 or 8

• Consistent formatting (e.g., { ... })
• And consistent spacing

• Consistent constructs (e.g., while(true) vs. for(; ;))

9/16/24 CSCI2340 - Lecture 5 20

Comments
• Block comments between logically separate components
• Separate sections
• Separate distinct functions
• Make it easier to find the components
• Make it easier to find things in the file without looking at all the code
• I prefer enclosed comments that stand out

• But some editors can make this hard (mine don’t)
• Javadoc comments for external methods & fields
• Or language-equivalent where appropriate

• In-line (//) comments where the code is non-obvious
• Use blank lines liberally but meaningfully (paragraphs, sentences)

9/16/24 CSCI2340 - Lecture 5 21

Formatting Conventions
• Supported by IDEs
• Eclipse, IntelliJ, various VS-Code plugins
• Supported by checkstyle tool

• Environment can reformat code to set specifications
• BUT not all conventions supported
• Usually, will not change line spacing
• Can handle initial indentation as you type
• Can re-indent quickly

• You should set this up for your project
• Write it down; include in repo
• Define settings for the environments you are going to use

9/18/24 CSCI2340 - Lecture 5 22

My File System Organization

• root (project name)
• lib
• resources
• javasrc
• edu …

• java (compiler output)
• bin
• scripts and executables

• <package>
• src: link to ../javasrc/…/package
• bin.java: link to ../java/…/package

9/16/24 CSCI2340 - Lecture 5 23

Maven File System Organization

9/16/24 CSCI2340 - Lecture 5 24

Integrated Development Environments
• Help a lot, but take a bit of getting used to
• Immediate feedback on syntax errors

• Quick feedback on semantic errors
• Good integrated debugging facilities
• Tool integration (git, junit, ant, …)
• Formatting, import organization

• I would like you to try Code Bubbles
• If you are using Java
• I need the feedback
• Based on first assignment
• But not required

• You should all be using IDEs
9/16/24 CSCI2340 - Lecture 5 25

Research in Coding Techniques

• Automatic Style Inference and Application
• Evaluating readability based on style

9/16/24 CSCI2340 - Lecture 5 26

PROJECT HOMEWORK
• Set up a GIT repo for your project
• Instructions for project meeting to follow

• You should have a good sense of what to implement
• Put a goal statement describing this in your repo

• And hand-in via canvas
• When you have a software architecture

• Create a document describing it in your repo
• This should be done by 9/26 if possible

• Agree on a coding standard for your project
• Write it down (and save in your git repo)
• Create an Eclipse / Idea / VSCode style file for it
• Possibly create a CHECKSTYLE description for it

9/16/24 CSCI2340 - Lecture 5 27

HOMEWORK /Further Reading
• Homework: Get an initial version of Bounce running
• Use the coding style agreed upon for your project

• Adapted for language differences
• Convert to that style if necessary
• Due 9/26 (hand in via canvas)

• Further reading
• https://git-scm.com/docs
• https://google.github.io/styleguide/javaguide.html
• https://www.oracle.com/technetwork/java/codeconventions-

150003.pdf
• https://medium.com/@rhamedy/a-short-summary-of-java-coding-best-

practices-31283d0167d3

9/16/24 CSCI2340 - Lecture 5 28

https://git-scm.com/docs
https://google.github.io/styleguide/javaguide.html
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://medium.com/@rhamedy/a-short-summary-of-java-coding-best-practices-31283d0167d3
https://medium.com/@rhamedy/a-short-summary-of-java-coding-best-practices-31283d0167d3

Project Meeting Exercise
• You should have a GitHub account (prior homework)
• Meet as a project group

• Decide on a project name (should have been done)
• One person create a GitHub repo for your project

• Can be public or private
• If private, add the other members of the group

• Add me as well (github Id: stevenreiss)
• Add a README.md file
• Add a status directory

• Everyone in group clone the repository
• Create a file tasks-<name>.md in status
• Git add it to the repo
• Git push

• When everyone is done
• Git pull the repo so that everyone has the latest copy

9/16/24 CSCI2340 - Lecture 5 29

