Hackles By Drake Emko & Jen Brodzik
KEEP N T o WU rrs LKEA iyl %CIPE L . ’ m A HOW STANDARDS e Hackles, Preston, you guys have been Well, | spent all Monday changing
SEU:'MHF S0 MY CODE THIS |5| UKE Bam IN UR”TEN BYA COR%TE TRHNSCR'P]’OF A COUPLE (SEE A/C OUAGERS, OWWCERENGONSS INSTANT MESACHG, m) working‘around ;he clock all week, but J [ Hacllles' curly braces so they don‘t}
MAY BE A LITLE. MESSY, A HOUSE BUILT BYA LAWYER DSING A PHONE | [ ARGUING AT IKEAR AND MADE H?' RIDICULOUS! Ifr!:::en';zlseen a single line of new code take up so much space!
LEME CHILD USING NOTHING | PUTOCORRECT THAT ONLY | | RANDO EDITS UNTL IT WE NEED To DEVELOP you
MTE SEE- | o T A HATCHET AND A | KNEW EXCEL FORMULAS | | COMPLED WITHOUT ERRORS. . || one unwERsAL STNDRRD _
Lt SURE SITUATION: || Tar covers Evervores | | STTUATION:
ITS FINE. PICTURE OF A HOUSE. OKAY, T REFD > ES
A STYLE GUIDE. THERE. ARE USE CASES. ey THERE ARE
( y 4 COMPETING N s I5 COMPETING
STANDPRDS. ?% STANDARDS.
[Then | spent all of Tuesday changing them]

Then | had to write a s
back so the code would be more readable! || scrint to automatically | can’t stand
programmers.
“ re-format all

the curly braces
in every file...

Basic Coding

«\l

£ & poke

[-%

CSCI2340: (Graduate) Software Engineering
Steven P. Reiss

WHAT ARE
THESE LINES
FOR? )
2 ]
o3
3

YOU JusT
CAN'T SEE IT
DON'T KNOW. IT‘SNP%VDVI'DEN
ASK JIM! BEHIND THE
CODE

I'VE COPY&PASTED
THEM FROM HIS
CODE

. \ «\l

9/16/24 CSCI2340 - Lecture 5

REUSE



Getting Ready To Code

* We're going to be doing design for a while
e But will eventually start coding
* And you should be coding the homework assignment
* And you are starting to work on the project
* If you need to do any prototyping

* This lecture is preparation for that

The Code




GIT

* We need support for joint projects
* Source code control, version management
e GIT is today’s standard (sccs, rcs, svn, perforce, ...)

* GIT provides a flexible, adaptable platform

* Distributed framework
* Even for one person development

* Allows lots of collaboration
e Supports complex branch and merge operations

* Provides the safety of older versions and going back
* Use if even for one person development



GIT Basic Concepts

* Repository
* Central location for all files
e Can be GitHub, local, or anywhere accessible

e GIT supports multiple repositories
e Each user has their own repository

* One is designated the master or head
e Can be changed if needed

* Individuals clone (check out) the repository
* They get their own copy of all the files

 Comes with a link back to the cloned repository
e But it is a repository in its own right

with

0 it access



Local Remote

|
GIT Basic Concepts

* Individuals can edit their copies

* Edit individual files

* Create private files & directories
 .gitignore file describes what is private

* Create new public files & directories
* But you must tell git using git add

e Remove files & directories
e But you should tell git using git rm

 Status operation to check what has changed

e Commit operation to commit changes locally

e Puts the changes into the local repository
» This allows going back, but doesn’t change the global repo



GIT Basic Concepts: Push and Pull

* Push a committed local repo to the global repo

* Updates the global repo with changes
* Creates new version of the global repo
* Makes changes visible to others

 Pull global repo into local repo
e Updates local files with global changes

 What happens if there are conflicts
 Merge changes — doesn’t always work
* Can require manual intervention
 Commit the merge code

revert

|
\compare
|

HEAD




GIT Basic Concepts: Branches

* Don’t want all others to see your changes

 Don’t want to see changes of others (temporarily) Git Branch
 But still want to save things globally

* Branches provide such a means

e Branches are separate versions of the system
* Independently developed from the main repository

MMMMMM

e But store in the repository

* Branches can then be merged
 With each other or with the main branch

* We’ll cover these in more detail later
* Today, continuous integration with a single branch is often used




Your Work

Master

GIT Complexities — 00

Editing and merge conflicts
* What if two people make changes to the same file
* What if one person deletes a file someone else uses
* You want to avoid this where possible — requires additional work

This can happen with or without branching

Repositories can be combined in various ways
* Merge — merge the code from the two branches (safest; recommended)
e But can require manual intervention and create corrupted files

* Rebase — apply your changes to current version if possible
» Stash and replace (removes all local changes) (git restore)
* WEe’'ll get into these in more detail later

* You should read up on these and decide what to use
* As a project team

Time at end of class to set up GIT for your project



Coding Style

* Most frustrating part of collaboration & using open-source software

* Coding style is essential

Helps with maintenance

Helps with understanding

Helps to make the code readable to everyone
Open source should be open

Consistency in a large project
* Much easier to work on code with known conventions

* WRITE CODE SO IT CAN BE READ BY PEOPLE
* Not so it can be executed
* For yourself, you team, and posterity
* Be proud of your code




COding Sty‘e Goals Coding Standards
Re?dL?)kz)IIilstxice; easy to read; spaced appropriately

* Easy to skim to get an overview of the code
* Easy to find things (non-linear readability)

Looking at an identifier N
* Easy to know what it is
e Easy to know where it is defined
: Structured
Looking at code G‘Eﬁ‘ﬁm&i—
. 1

< Inline comments

* One should understand its structure

* Without having to read in detail ._
_onventions

Simplify debugging & maintenance

P |
* Avoiding name conflicts &V Enors & Excaptog
* Being able to find name in source handling
* Make changes easier !

e Keep things local

9/16/24 CSCI2340 - Lecture 5 10



Code Style Components

* Naming Conventions

. ord.ering Convermtions Code style
* Coding Conventions and
* Formatting Conventions standarts

* File Organization

9/18/24 CSCI2340 - Lecture 5 11



Naming Conventions

Goal:
* Distinguish different types of names
e Understand what the name means directly
* Understand where to look for the definition
e Understanding the scope of a name

My coding style (not what you need to use)
* Mainly for Java, adapted for other languages

Fields (static variables)
* All lowercase, contain an underscore, meaningful
e Always private (or protected) to avoid naming conflicts

Local Variables (and parameters)
* All lowercase, no underscore
e Short names okay if used within a few lines
e Otherwise use meaningful names

THE COMMITTEE
DECIDED THAT THE FILE
NAMING CONVENTION
WILL START WITH THE
DATE, IN THE ORDER OF
MONTH, YEAR, DAY...

sy

[I) T 4
_— j

Dilbert com DilbertCartoonist@gmail com

... THEN A SPACE,

THEN THE TEMPERATURE |:

AT THE AIRPORT, AND
THE HAT SIZE OF THE
NEAREST SQUIRREL.

=S

TO BE PERFECTLY
HONEST, IT WAS A
LONG MEETING AND

:| WE PROBABLY DIDN'T

| © 2011 Scott Adames, Inc

DO OUR BEST WORK
TOWARD THE END.

~~—— ﬁ "\‘

7 il

Naming Conventions




Naming Conventions

e Constants (final static fields)
* All uppercase, underscores separate words
* Meaningful names
e Start with package name if external

* Methods

* Camel case names starting with lowercase
e Can be single word (e.g., process), but this is unusual

* Meaningful names
e Access methods start with get, set, or is
* Factory methods start with create or new



= g
y ' lager § use ol

user

) Gim i oxperience 5

d
5

riames

.‘»‘new‘

Namlﬂ Conventlons Sgssbem project - U
g namlng exphcﬂ:
* Types (classes, interfaces, enums,...) Convenmon c.o
* Camel case starting with uppercase (UpperCamel) : = ;,

e Outer types should start with package name
e External (visible) inner types should start with package name
* Single outer type per file

* Packages
e edu.brown.cs.user.project.<package>
* edu.brown.cs.project.<package>
e Should always be there

* Imports
* Use single class imports (not on-demand) [fix imports command]
e Use static imports only where names will remain unambiguous



Naming Conventions

Different language can require different conventions
* May be recommended by the language

» May be required by the language (dart _xx for private) NAMING

* Adapt your coding conventions to the language as needed CONVENTIONS

e Compromise on multi-lingual projects o
When modifying existing code, use its conventions

* Augmenting, adding a feature e

%

e Patching, bug-fixing
* You first should learn the existing code conventions
When importing external code

e Change to your conventions
e But add citation to the original (copyright)

Project should have a common set of naming conventions
» Decide on these before you start coding (can use or adapt existing standards)
e Write them down so all members of team are consistent
e Put this in your repo

Javongcr'\oWL

Dart



I 7 |
‘;

ORDIERING COFFEE INA |

Pl O

Ordering Conventions

* Goal: Make it easy to find things in a file

e Within a file (my Java conventions as an example)

* Header comments — name, purpose, author(s), copyright(s)
* Should only have a single purpose (we’ll get to that in class design)
* Include names of all authors (add as needed)
* Always include a copyright statement (even if simple or a reference)

* Main method if present

* Other top-level static factory methods

* Field definitions (private and then static private)
e Constructors and self-factory methods

* Access methods

e Public methods

* Private methods

* Inner classes (comment at end of class)

* Tail comment -- note the end of the file




: : Sorting Algorithms
Ordering Conventions STTg AERT

5]

* Not as strict as naming conventions

* Some slack allowed
* Private methods related only to a public method
* Inner classes related only to a single method
* Factory methods for inner classes might be treated as constructors
 Static methods might come earlier



Ordering Mathematical Operations

S

Ordering Conventions T e

Addition

-+

* Different languages can use different conventions

* Some might recommend them
 Some might require them (define before use)

* When modifying existing code, use its conventions
* Augmenting, adding a feature
e Patching, bug-fixing
* You should learn the existing code conventions
* When adapting existing code, convert to your conventions

* Project should use a common set of ordering conventions
* Decide on these before you start coding
e Write them down & put into your repo




Coding Conventions

* Principle of least privilege (keep things local)
* Make things private if possible
* Make things public only if necessary
* Fields should be private; protected at worst
* Never accessed outside of a class (or subclass) directly
» Javadoc (or equivalent) for all public and protected items
* Non-trivial descriptions

* Minimize public interfaces (keep small and few)
* Protected versus package-protected
* Methods should fit on one “page”
* Inner classes, static inner classes, and outer classes
* Hierarchies as inner classes versus outer classes
e Coding conventions depend a lot on the language
* WEe’'ll cover coding conventions in more detail later

9/16/24 CSCI2340 - Lecture 5

The Principle of

Least Privilege

19



Formatting

Avoid complex conditions and constructs /\
* Code should be obvious
* Break up complex conditions into logical units

* Parenthesize appropriately (Xand Y or Z)
Code should fit on the line

* Maximum line length 80-100 characters
e Split lines, or better yet, rewrite to avoid COde ShOUId Be Easy to

e Use spaces, blank lines, and comments to enhance readability Understand
* And do so liberally
* Sentences and paragraphs

IS HE
THE ONE
WHO CAN
PROGRAM THIS?

SHOULD WE TAKE YoU
TO OUR LEADPER?

Consistent indentation
* 3 or4spaces,not2or8

Consistent formatting (e.g., { ... })
* And consistent spacing

Consistent constructs (e.g., while(true) vs. for(; ;) )




Comments

* Block comments between logically separate components

* Separate sections

e Separate distinct functions

* Make it easier to find the components

* Make it easier to find things in the file without looking at all the code

* | prefer enclosed comments that stand out
e But some editors can make this hard (mine don’t)

e Javadoc comments for external methods & fields
* Or language-equivalent where appropriate

* In-line (//) comments where the code is non-obvious
* Use blank lines liberally but meaningfully (paragraphs, sentences)



Formatting Conventions

e Supported by IDEs TYTTTYYY

* Eclipse, IntelliJ, various VS-Code plugins
e Supported by checkstyle tool

* Environment can reformat code to set specifications
* BUT not all conventions supported
e Usually, will not change line spacing
e Can handle initial indentation as you type
e Can re-indent quickly

* You should set this up for your project
e Write it down; include in repo
* Define settings for the environments you are going to use



My File System Organization

. % D:\Product\src\com\xyz X
¢ ro Ot ( p rOJ e Ct n a m e ) File Edit WYiew Favorites Tools Help ,’,’
[ ) | i b Q Back ~ 7 ? / Search i Folders E'
() r‘eso u rces Address | Di\Productisrcicomixyz v a Go
Folders X Mame
1 j adVvaSslrc = ) Product A~ ] Main.java
=l |2 bin
¢ Ed u... = |) com
. . ) xvyz

* java (compiler output) =
* bin . =] 8 .

* scripts and executables
e <package>
e src: link to ../javasrc/.../package
* bin.java: link to ../java/.../package



Maven File System Organization

myapp
e README .md
nbactions.xml
pom.xml
src

— main

— mycompany

L— myapp
L— HelloAppEngine.java

— webapp

— WEB-INF

- appengine-web.xml
- logging.properties
— web.xml

—— index.jsp

L— mycompany

L— myapp
L— HelloAppEngineTest.java



Integrated Development Environments

* Help a lot, but take a bit of getting used to

* Immediate feedback on syntax errors
* Quick feedback on semantic errors

* Good integrated debugging facilities
* Tool integration (git, junit, ant, ...)
* Formatting, import organization

* | would like you to try Code Bubbles
* |f you are using Java
* | need the feedback
e Based on first assignment
* But not required

* You should all be using IDEs

tanssen Engineering {




Research in Coding Techniques

* Automatic Style Inference and Application
* Evaluating readability based on style



PROJECT HOMEWORK

* Set up a GIT repo for your project
* |Instructions for project meeting to follow

* You should have a good sense of what to implement

* Put a goal statement describing this in your repo
* And hand-in via canvas

* When you have a software architecture
e Create a document describing it in your repo
* This should be done by 9/26 if possible

* Agree on a coding standard for your project
* Write it down (and save in your git repo)

» Create an Eclipse / Idea / VSCode style file for it
e Possibly create a CHECKSTYLE description for it



HOMEWORK /Further Reading

* Homework: Get an initial version of Bounce running

* Use the coding style agreed upon for your project
» Adapted for language differences
* Convert to that style if necessary

* Due 9/26 (hand in via canvas)

* Further reading
e https://git-scm.com/docs
e https://google.github.io/styleguide/javaguide.html

* https://www.oracle.com/technetwork/java/codeconventions-
150003.pdr

. https://m@dium.com[%rhamedy/a-short—summary-of—java-coding-best—
practices-31283d016/d3



https://git-scm.com/docs
https://google.github.io/styleguide/javaguide.html
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://medium.com/@rhamedy/a-short-summary-of-java-coding-best-practices-31283d0167d3
https://medium.com/@rhamedy/a-short-summary-of-java-coding-best-practices-31283d0167d3

Project Meeting Exercise

You should have a GitHub account (prior homework)

Meet as a project group
* Decide on a project name (should have been done)

One person create a GitHub repo for your project
* Can be public or private

* |f private, add the other members of the group
* Add me as well (github Id: stevenreiss)

e Add a README.md file
* Add a status directory

Everyone in group clone the repository
* Create a file tasks-<name>.md in status
e Git add it to the repo
e Git push
When everyone is done
e Git pull the repo so that everyone has the latest copy



