
Team
Management

CSCI2340: Software Engineering of Large Systems
Steven P. Reiss

9/19/24 CSCI2340 - Lecture 6 1

Continuing Preparation for Programming

•Working in teams
• Collaborative software development
•Workflows and actions
• Cost Estimation
• Test-Driven Development

9/20/24 CSCI2340 - Lecture 6 2

Working in Teams

• Required for large projects
• Too big to do on ones own
• Multiple people can work in parallel

• Requires Effort
• Coordination, organization, management

• Difficult to make productive
• Mythical Man Month (Fred Brooks)

• Tools can help
• Software process programming
• Modern team management tools

9/19/24 CSCI2340 - Lecture 6 3

Team Size Matters

• Small teams (<= 4)
• Can get everyone together
• Number of communication paths is small
• Meetings can be productive, even if not organized
• Easier to move people around
• People can learn the whole system
• Easy to divide project into logical pieces
• Front end, back end, database, business logic, …
• People can work independently

9/19/24 CSCI2340 - Lecture 6 4

Team Size Matters

•Moderate Teams (~6-12)
• Assume at least one person will be absent from any meeting
• Assume at least one person will flake out (get sick, …)
• Can’t communicate with everyone
• Meetings take longer & get less done
• Need better coordination
• Project needs to be managed
• More difficult to divide into independent pieces
• More critical paths (things that can go wrong)
• Difficult to understand the whole system

9/19/24 CSCI2340 - Lecture 6 5

Team Size Matters

• Large Teams (15+)
• Require a hierarchy
• Target system generally quite large
• No one knows all the details
• Most members don’t know the complete system

• Concentrate on your piece and how it fits in, not everything else
• Different strategies are used
• These are out of favor except for very large systems
• Divide the system into separable components

• Build these independently using smaller teams
• With common libraries or frameworks (separate teams)

9/19/24 CSCI2340 - Lecture 6 6

Mythical Man-Month

• Adding people to a project can delay it further
• Can’t measure effort in terms of man-months

9/19/24 CSCI2340 - Lecture 6 7

Team Management

• Software teams need to be managed
• Ensure equality of workload
• Ensure consistency of decisions

• Democracy doesn’t work
• Someone must make hard decisions
• Someone must ensure consistency
• Someone must make sure everyone is pulling their weight
• People aren’t getting in over their head
• People work on things they are best at

9/19/24 CSCI2340 - Lecture 6 8

Team Leader

• Need a team leader or manager
• Break project into tasks
• Assign people to tasks
• Keep track of what everyone is doing
• Coordinate where needed
• Reassign people as needed
• Make critical decisions
• Ensure consistency
• In charge of presentations

9/19/24 CSCI2340 - Lecture 6 9

Team Management: Other Roles
• Assistant Manager or Leader

• Manager not available 24/7, might get ill, might need help
• Product Managers

• In charge of a portion of the software (e.g., front end or back end)
• Documentation Manager

• Organize files, documents, requirements, repository, versions & branches …
• This is what I see to grade you on

• Quality Assurance (QA, Testing) Manager
• Create system test cases, supervise testing, …
• Approve code for release

• User Interface Guru
• Ensure a consistent, easy-to-use, nice-to-look at user interface
• Designing look and feel, icons, logos, etc.

• Provisionary
• Handles setting up or provisioning AWS, VMs, Containers, databases, ...

9/19/24 CSCI2340 - Lecture 6 10

Team Management: Other Roles
• Security, Privacy and Ethics Czar

• Ensure system is secure & fair
• Security testing, fairness testing
• Set privacy policy, enforce privacy policy

• Performance Analyst
• Determine where and when there are performance problems
• Performance testing

• Scribe
• Take notes at meetings; ensure information is current

• Domain Experts & Users
• Provide essential information about the problem being solved

• Skeptic
• Question everything. Avoid risks and failure.

9/19/24 CSCI2340 - Lecture 6 11

PROJECT

• Let's have a short project meeting
• Discuss roles
• Tentative role assignments
• Check status
• What should be done by whom this week
• Requirements, specifications and software architecture

• 10 minutes
• Then we’ll get into tools & other topics

9/19/24 CSCI2340 - Lecture 6 12

Team Communication
• Regular communication is key to a successful team

• Knowing how your part fits with others
• Getting things done in a time fashion
• Negotiating who does what
• Negotiating interfaces between components

• Physical meetings can be difficult
• Team members might be distributed around the world
• People have other commitments

• Tools for communication
• SLACK
• Discord
• JIRA
• GITHUB (wiki, issues)

9/19/24 CSCI2340 - Lecture 6 13

GitHub Communication Tools

• GitHub Wikis
• Good for documentation, notes, comments
• Internal as well as external documentation

• Let others provide feedback
• GitHub Issues
• Items in repo to plan, discuss and track work
• Bug tracking
• Combines slack-like messaging with project planning

9/19/24 CSCI2340 - Lecture 6 14

Version Management: GIT

• Designed for modern software development
• Flexible repositories
• Ease of creating branches

• Designed for agile development
• Good for all development

9/19/24 CSCI2340 - Lecture 6 15

Software Branching
• Individuals (or smaller teams) work on an extension or feature

• Interim system might not be usable
• Extension might not work or be desirable at the end
• Multiple such extensions developed at once

• Want to allow these teams to work productively
• Without interfering with one another

• This can be accomplished with branches
• Different, independent versions of the software
• Developers (or small teams) work on their own branch

• But branches aren’t necessary
• Can develop a substitute method or class
• And make using that class conditioned on a flag or environment variable
• A bit more work as the status quo has to be maintained

9/19/24 CSCI2340 - Lecture 6 16

Avoiding Branches
• Branches can create confusion
• Coding for the past, not the future

• Eventually branches need to be merged
• With each other
• With the main system

• Problems arise when there are conflicting changes
• Ideally these are avoided
• Selecting features to avoid conflicts
• In practice, they are common
• Branching makes these worse

• Need a team strategy for handling merge problems
• Team manager, negotiation, code ownership, …

9/19/24 CSCI2340 - Lecture 6 17

Continuous Integration
• Always have a working version of the system

• Minimize branching for everyday development
• Merge all code changes regularly (daily/weekly/…)
• Build and test the system on merge
• Automate this process as much as possible

• Pros
• Simplifies merging
• Helps find bugs faster (continuous testing)
• Improves productivity
• Supports dogfooding

• Cons
• Requires development that can be merged
• What to do when tests fail

9/19/24 CSCI2340 - Lecture 6 18

Branching and Maintenance

• Continuous integration obviates branching
• Everything done in the main branch
• Everyone works in the main branch
• Generally fewer and less severe merge conflicts
• Requires more thought while coding

• Branching might still be needed for maintenance
• Current stable version of the system for users
• Current development version of the system
• Previous user versions of the system

• Security patches need to be made in all of these

9/20/24 CSCI2340 - Lecture 6 19

Families of Software Systems
• Set of applications with common set of features
• All developed at once as one system
• System can be configured in multiple ways

• Might be related versions of the same system
• State & Federal tax programs
• IntelliJ enterprise versus community
• Different versions of an operating system

• Might be separate systems with a common framework
• This is another approach that is used
• But should be considered in architecture & design
• Generally, for larger systems

9/20/24 CSCI2340 - Lecture 6 20

Workflows and Automation

• Continuous Integration requires automation
• Building, testing, deploying the system
• Useful in general

• Workflows are a way of doing this automation
• Triggering event
• Actions to be run at that point

• Workflows are more general
• Can be used for lots of different things
• On check out; on push; on pull; on reviews
• Supported by tools

9/19/24 CSCI2340 - Lecture 6 21

GitHub Actions

• A general approach to automation
• Implementation of workflows
• For continuous integration or otherwise

• Actions have a trigger event
• Push, pull most common
• Lots of others available

• Actions have one or more jobs
• Common jobs (e.g., git actions, email, build & test)
• Scripts
• Actions can be conditional, run locally or globally, …

9/19/24 CSCI2340 - Lecture 6 22

Using GitHub Actions
• Defined in a yaml file in .github/workflows in project directory
• Useful for team projects
• But these run in GitHub

• AWS CodePipeline and other alternatives exist
• Git provides a local alternative: hooks
• Executable scripts in .git/hooks directory
• pre-commit, prepare-commit-msg, commit-msg, post-commit
• post-checkout, post-merge (pull), pre-push

• Can also just create your own shell scripts
• Or ant tasks or make tasks

• You should think about how these could be used in project
• To simplify your work

9/19/24 CSCI2340 - Lecture 6 23

Estimating Time and Effort

• Required for Team Organization
• Divide the project up fairly
• Get critical pieces working early

• Especially when others are dependent on them
• Determine what will be done when
• Determine who will do what
• You need to know how long it will take to build the software

• Based on
• Complexity and size of code involved
• Complexity of interaction with other components
• Knowledge & abilities of programmer assigned

9/19/24 CSCI2340 - Lecture 6 24

Estimating Time and Effort

• Known systems – take various factors into account
• COCOMO model is the best known
• Expert experience is most widely used

•My Approach
• Expert estimate based on similar code, size, complexity
• Multiply by 4 (for myself; different factor if others coding)

• Easier to do for smaller pieces of code
• Rather than the whole system at once
• Agile sprints – only estimate the week’s work, not the project

9/19/24 CSCI2340 - Lecture 6 25

Project Management

• Some pieces of the project are more important than others
• Required before other pieces can be tested (or even written)
• Required as a framework for building other pieces

• Project management tries to identify these dependencies
• Project dependency graph (PERT & GANTT Charts)

• Add time estimates to this graph
• Identify critical path (what takes the longest)
• When to start each piece so it gets done in time
• Who to assign to each piece

9/19/24 CSCI2340 - Lecture 6 26

PERT and GANTT Charts

9/19/24 CSCI2340 - Lecture 6 27

Project Management Software

•Microsoft Project Manager
• JIRA
• GitHub issues (gantt chart generator)

9/19/24 CSCI2340 - Lecture 6 28

Test-Driven Development
• This is emphasized in agile development
• Used in earlier courses

• Write the test cases first
• Develop the code to pass the test cases

• Design the code & system so it can be tested
• This is not as easy as it sounds
• Especially for UI-based, interactive systems

• Write the user interface first
• Develop code to handle user interactions one-by-one
• Simulate the user interactions with test cases
• Good alternative or addition for UI-heavy applications

9/19/24 CSCI2340 - Lecture 6 29

Test-Driven Development Pros/Cons
• Advantages
• You can see how well you are doing
• Provides a focus for code development
• Better understanding of what needs to be written
• Ensures code works as it is written

• Disadvantages
• Test cases can be difficult to write, especially interactive/graphical

• Can be as much work as actually writing the code
• Might need to write mocking (dummy) libraries, etc.
• Test cases and testing code can be buggy
• Evolving code means evolving the test cases as well
• Can overfit code to test cases, not look forward
• Files, external systems, etc. get in the way

9/19/24 CSCI2340 - Lecture 6 30

Test Cases
• Are an essential part of the system
• Whether written before, during or after coding
• Needed to avoid regression errors
• Needed to approve code before general use

• Can clarify design before coding
• Can need as much effort as the code
• Typically, with more bugs
• Often not maintained as well

• Alternatives
• Dogfooding
• Automated bug reporting
• Alpha and beta testing

9/19/24 CSCI2340 - Lecture 6 31

Research in Programming Teams

• Continuous Integration and workflows
• User interface testing
• Design for software families

9/19/24 CSCI2340 - Lecture 6 32

PROJECT HOMEWORK
• Check out various communication tools

• SLACK, GitHub Issues, …
• Choose one or more for your team

• Set it up, start using it
• Finalize project roles

• Ensure absent people agree to their role
• Ensure everyone is “happy”

• Set up an initial PERT/GANTT chart for your project
• Possibly using GitHub issues
• Little to put in there now since we haven’t done design

• In addition to deciding on an overall software architecture
• Based on requirements and specifications
• Software architecture hand-in due Thursday (one per team)

9/19/24 CSCI2340 - Lecture 6 33

HOMEWORK / Further Reading

• Code up the bouncing balls assignment
•Make your programming assignment code match the coding

style for your project
• With a personal package name or equivalent
• With personal class names matching package
• Modified for different programming language if needed

• Programming assignment should be working by class
Thursday

9/19/24 CSCI2340 - Lecture 6 34

Further Reading

• https://github.com/minhloc2011/books/blob/master/People
ware%2C%203rd%20Edition.pdf
• https://martinfowler.com/articles/continuousIntegration.ht

ml

9/24/24 CSCI2340 - Lecture 6 35

https://github.com/minhloc2011/books/blob/master/Peopleware%2C%203rd%20Edition.pdf
https://github.com/minhloc2011/books/blob/master/Peopleware%2C%203rd%20Edition.pdf
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html

