SIMPLY EXPLAINED

SOMETHING

\

GREAT
SOFTWARE

MY NEwW DESIGN WILL
MEET ALL OF OUR
CUSTOMERS CURRENT
ANC FUTURE NEEDS.

YLEASE DONT ASK
ML TO PUT FLALS
IN MY DESIGN.

THAT & NO G0CD;
THEYLL NEVER
NEED TO UPGRADE

THE INTER-
FACE NEEDS
TO BE MORE

| CONFOUND
ING.

THE HELP SCREEN COULD
RECOMMEND MARRYING
AN UNEMPLOYED SHIRT-
LESS GUY WITH A

6 Software Design Patterns

Observer Pattern:

When one object notifies
a collection of other
objects about changes.

Adapter Fattern:

When one object can be wrapped
in such a way to appear like a
different kind of object.

Thermostat Fattern:
Lets you adjust the
temperature so the
0's hatch into I's.

Strategy Fattern:
When an object can
encode one of its
behaviors as an object
that can be swapped.

Whiteboard Fattern:
When there's an
object that you

can like write on.

Spinny Chair Pattern:
When one object can rotate
in such a way that . ..

Are you just
naming objects in
the room, now?

"Design Fatterns"”
as a proficiency.
You should be able

Go ahead and check

DEVELOPMENT PROCESS
Wikipedia, but wait at
least about 1S minutes

after this interview

is over.
CSCI2 6 20 B e

http://linkedlistcomic.com/23

High Level Design

* Suppose you know your softwa
* You next must design its sc
* Both its components

* To do this you HLD LLD
° Wh at are t High Level Design Low Level Design

g% AT B
Describes ‘-:-‘ @

Structure,
components &
relationships

@ Typically @
created by -

Architects Engineers

Implementation
details

What is High-Level Design

* Bridge between software architecture and detailed de

* Overlaps with software architecture
* Elucidation of the software architecture

* Overlaps with detailed design
» Starting point for low-level design

* Typically based on software archi
* Determine how the node

* Develop a consiste
* Each architecturaz

Update

Plans,
Specs & Construction
Estimates
I

Project | Preliminary
Initiation | Engineering

Concept of
Operations

Project | Operations &
Closeout | Maintenance

System
Validation

System

Goals for High-Level Design

Working system with minimal effort
e But initial system is a small part of development

Maintainability
* The resultant system must be maintainable over time
* The design must accommodate changes

Evolution
* Easy to add new features, handle changin
* Without degeneration (code deterior

Risk
* Need to minimize immedi

Security, Privacy, & Ethi
e These should b

Team DeveI

<2
/>O'

%%
)

Detailed Unit / Device
De3|gn Testing
&

Software / Hardware =
Development
Field Installation

Implementation

Design for Maintenance]

Periodic Maintenance

* Determine what outside things might change
e OS interface, DBMS interface, User interface
e Algorithms (e.g., LLM to use)
* Ensure these are isolated as much
* Make these easy to change wi

* Make it easy to find an

* Defensive design
* Error handli

* Logging

Design for Evolution

* Determine what parts of the system are likely to change
* Ensure these are isolated (single component if possible)
* Changes should be local where possible

* Required, higher-priority, short-term requirements (beyond Core)
* Optional, lower-priority, long-term requirements

* Design the system so that adding these is possible Evolutionary Design
) W'thOUt gha_ngmg too much of the system prie i s e i i
* Higher priority -> easier to add
* Things requiring a major rewrite won’t be added

* This is why | suggest full requirement specifications

e Support agile development
* Make it easy to add new features
* Features should be in a small number of components

blog.adrianbolboaca.ro

D e S i g n fo r R i S k II:c;gsra::csl\llITIGATION STRATEGY

* |dentify potential risks
* Requirements, specifications, ske
* Address these risks

e Either isolate them

* Make it easy to
* Make it eas

x Where do
What do you you need to
do well? improve?

e T

|dentifying Risks

e
What are What obstacles
your goals? do you face?

* What can go wrong (skeptic)
* Always be skeptical of your own code

 What do you not understand
* How to implement somethi
* How complex some cod
* How long somethi
* How long code

* How large
- Risk
Identification
Techniques

Design for Security, Privacy & Ethic

ENHANCED SECURITY DESIGN CYCLE

AGILE | DIVERSE | IMPROVEMENT
® . e CONSTRUCTION
© IMPLEMENTATION AND TESTING,

END
TESTI
ASSE H

ON;
HOW DO WE MEASURE
CAPABILITY? HOW MUCH IS RISK
; a \ REDUCED?

* What data needs to be secured
* Or kept private
* Oris legally restricted in some way
* Oris company confidential

* |solate that data in one component
* Evenif it’s a separate compone
e Then securing the data invo
* Keep itin a single compc

 What are the ethi
Difficult to de
But you c

App

FFFFFFFFFF

Design for Team Development

* Each team member should have their own code / components
* Independence improves programmer efficiency
* Independence allows asynchronous development
e Allow individual testing, debugging A
* Addressing the strengths of the team

* Well-defined interfaces between people
* You know precisely what to code
* Know how to use other’s code
e Others know how to use what you code
e But you should not need to know the others act

 Number of components vs team size
* Ensure there is a components for each
e Can have additional component

* |If fewer, ensure the compone
* Multiple team member

-l

9/19/24

Correct vs Incorrect Designs

* Almost any design can be made to work
* That doesn’t make it correct however

* Addressing these design goals makes life easier
* Initially (creating the system)
* More importantly as the system evolves & is €

* A good design can cut the workload sigr
* Half the amount of code
 Less refactoring and rewriting

Less time adding new fea

Easier to debug (findin

Easier to maintain

CORRECT INCORRECT

9/19/24

EXERCISE

* Let’s assess our initial programming efforts

* We will split into small groups (<4). Within eac
each other the initial version of your progr
assignment and provide feedback to t

* Feedback should be constructive
* Get ideas from others for you
* Give others ideas on ho

* 10 minutes

9/19/24

Approaches to High-Level Design

Evaluation Component

Building Component

mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

* First step: Identify components R B
* Architectural components are a starting point
* Break down components into subcomponents I
* |dentify necessary components based on goals
* Think in terms of packages or modules or pr

* Keep breaking down components u
 Component can be handled by an i
 Component implementation
e Component implementati

Design, Development

Selection and Procurement

* The overall

9/19/24

Component-based
soltware system
. O Software module
Component Selection C s
- . ; T
] > ' i H—- ! :
]

* Top-level components reflect the software architecture
» Reflect the process structure
e Separate architectural components are separate
* Break these components down into subcompor
* Top-down approach to finding components
* Find commonalities (DAG, not a tree

e |solated elements should be in a s

* Add these as component
* |solated for maintenan

Component Selection (cont.)

* Complex functionality should be in a single compo
 Complex algorithms as well
* These are likely to change over time

* New features should be easy to add
* Adding the feature changes only o

* The feature might be added a
* That should fit into the ov

* If not a single compo

* Front end + bac
* No potenti

* Compone

Interfaces to user application or other
software components

Software component

. . AP| headers
Component Description [
templates files libraries description
* Goal and purpose of each component

* Name
 Single short phrase or sentence

* Clear, meaningful
* Avoid ANDs (two components), etc.

* Once you know the components you
* What is important is the compone M

* How the component interac
* What it provides; what i

* High level design me
* As well as iden

* The compon
e Aslo

Interfaces

* High Level Design is the design of Interfaces

* Each component needs an interface

* How it is used by other components
 What it can and cannot do

* The set of component interfa

 Concentrate on the inte
* Both in what is provi
e And in what i

Interface Goals

* Provide a concrete definition of the compon
* Understanding of what is needed and wkt

* Enable others to use the compone
* Without knowing its internal
* Develop code even before
* Develop test cases
* Write a mocking

 Ensure the de

Interface
Validation

Phase 4

Implementation

Phase 3

User, task,
environmental analysis

Phase 1

Interface
Design

Interface Goals

* “Interface” is defined loosely

e Can be interface class, set of calls, a set @
options, RESTful urls, ...

e Can be bi-directional
e Often includes callbacks to off

e Interface Definitions

 Signatures with m
* For each m

* Include

It is used to achieve
abstraction.

By interface, we can
support the functionality
of multiple inheritance.

A

It can be used to achieve
loose coupling.

Interface Design

* Provide the needed functionality

* Keep it as simple as possible

* Single interface class, possibly with inner interfaces
* Shouldn’t be a large set of classes
e Shouldn’t be a hierarchy (these are represented by the
* Small set of methods or functions or messages
* Minimum parameters, simple types
* Not fields or variables
* Minimize constraints on ordering, ca

* Provide room for expansion
* |dentify possible future
* What is going to be
* Its okay to define
* Its okay toin

ATM Machine

9/19/24

Control application
Compasition out of

Interface Design e

7

' Compoxniion

\
e Document the interface Software

. A component
* Provide a description of each element -:libr;?'>

* Parameters, results, what it does
* Provide constraints

* What is expected of the inputs \

* What must be done before the element i m:xm
* What outputs are given under wha

* Include error handling

* What happens if inputs ©

* What exceptions cz
* What happe

 The interface
* Impler

|
Absyactan

Representing a High-Level Design

* Goals
* Define the components and their interfaces
* Represent these without doing the implementatior
* Provide a basis for detailed design and coding

* APl-based Design (for each componer

* Application Program Interface
e Defines calls and requests
* Defines data formats
* Defines convention
* Defines callbacl

9/19/24

UML-Based Design Represen

 UML class diagrams can be usec
 Components can be represe

 Components can be reg
* Methods in the

UML Class Diagre

e Classes
* Name

Aggregation Class

Atfiribute :

Control class
Operation Composition

UML for High-Level Design

* Meaningful information
* Fields can give a sense of the class (but wc
* Links imply usage connections, not cc
* Basic methods provide the inter

* Diagram in levels

* Keep size of each leve
* Then use a sepe
* Facades, in

UML For High-Level Design

* UML diagram can be used to sketch out t
* Easier to change then a text or code file
* Easier to move things around for gr

e Start with all possible comp

* Group these in a logical
e Hierarchies repres
* Choose one s
* Common
* Inte

*C

mmmmm

UM Colaboration

L Component

ML Deployment

........
........

WO Eam T

mmmmm

System to Design

* | want to control my HO trains from my computer

* Creating hardware
* Embedded sensors in tracks
* WIFI control of switches, signals

* Using hardware
* WIFI control of engines

e \Want to direct trains to follow defin

* Want to ensure safety
* Avoid collisions, derailmer

* Want a current disple
* Want detailed

* Smart HO

9/20/24

Software Architecture fo

Figure 5.7: The architecture of Shore

UML Design

ViewFacto
 Added Control comp
* Create Facade
ARN

|
SafetyFactory

ModelFactory

ModelSignal ModelSensor
ModelEngine ModelBlock

UML-Based Design Representation

* Advantages
e Useful for initial exploration , =
* Can use graphic editor to explore possibilities = e U
* Result is a nice visual representation of the syste
* Can be done on paper or using UML editors

* Disadvantages
* Adding methods/fields is messy
* Editors; syntax
* Probably won’t have a co
* Not something one c

* Won’t be part of
 Willgeto

Language-Based Design

| prefer to work in a programming language
* Probably the implementation language (not necessary)
* Editors available
e Syntax well understood

Create a design that can be used in the impl
 Starting point for the implementation
* Code against the interfaces
* Design evolves with implemen

But still simple enough to be
* Adding, removing, ch
* Adding, removin
e Can ”play”

Multipl

Design
Language
Systems

Language-Based Design

* Pros

* You can use it as the start of the implementation
* It in the target language
 When it is complete and ready

* Code against the design directly
* Becomes part of the system
* Evolves with the system

* Done using known editors, syntax

* Cons

* You need to know the t
 We’ll cover choice
* Not all langua

 Not all int

9/25/24

PROJECT HOMEWORK

* Start thinking about the high-level design for your project

 How would you break it up: what are the components
* Try allocating specification items to components

* Possibly use a UML diagram to play with possibilitie

* Install UMLet, argouml, umbrello
* Web-based UML tool (visual pradigm, creately)

* GitHub repo should include
* Requirements, specifications, archi
* Simple use of GitHub Issues

* Project Presentations o
* 10 minute presentati

9/19/24

Programming Assignment Homework

* Update your programming assignment hand in
* Using feedback from today’s breakout session
* Ensure it uses project code style
* Ensure there is a header comment, meani

* Ensure naming conventions work
* Name implies its kind and definiti
* Easy to locate items in the fi

* You might try creati

9/19/24

Further Reading

« UML: IBM UML Introduction
* Textbook, chapter 6

https://developer.ibm.com/technologies/web-development/articles/an-introduction-to-uml/

