
High Level Design
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

9/19/24 CSCI2340 - Lecture 7 1

High Level Design

• Suppose you know your software architecture
• You next must design its software constituents
• Both its components and communications

• To do this you need to consider:
• What are the goals of your design
• What are the actual software components
• How to represent the design

• This is what we cover next
• Today and next time

9/19/24 CSCI2340 - Lecture 7 2

What is High-Level Design
• Bridge between software architecture and detailed design

• Overlaps with software architecture
• Elucidation of the software architecture

• Overlaps with detailed design
• Starting point for low-level design

• Typically based on software architecture
• Determine how the nodes and links might be implemented
• Develop a consistent, implementable structure

• Each architectural component can be
• Single process in a multiple process system

• Might need to be broken down more
• Single subsystem (sets of packages)

• These will need to be broken down more
• Single package (set of classes)
• Single module (set of functions/classes/…)

• Design components can combine or split these

9/19/24 CSCI2340 - Lecture 7 3

Goals for High-Level Design
• Working system with minimal effort

• But initial system is a small part of development
• Maintainability

• The resultant system must be maintainable over time
• The design must accommodate changes

• Evolution
• Easy to add new features, handle changing needs, handle changing environments
• Without degeneration (code deteriorates and convolutes over time)

• Risk
• Need to minimize immediate and future risks

• Security, Privacy, & Ethics
• These should be considered as part of the design

• Team Development
• Design should allow independent work by team members
• Design should build on the strengths of the team

9/19/24 CSCI2340 - Lecture 7 4

Design for Maintenance

• Determine what outside things might change
• OS interface, DBMS interface, User interface
• Algorithms (e.g., LLM to use)
• Ensure these are isolated as much as possible
• Make these easy to change without affecting whole system

• Make it easy to find and isolate problems (bugs)
• Defensive design

• Error handling, exceptions, …
• Logging
• Testability
• Incorporate these into initial design (high-level and detailed)

9/19/24 CSCI2340 - Lecture 7 5

Design for Evolution
• Determine what parts of the system are likely to change

• Ensure these are isolated (single component if possible)
• Changes should be local where possible

• Determine what features might be added
• Required, higher-priority, short-term requirements (beyond Core)
• Optional, lower-priority, long-term requirements
• Design the system so that adding these is possible

• Without changing too much of the system
• Higher priority -> easier to add
• Things requiring a major rewrite won’t be added

• This is why I suggest full requirement specifications
• Support agile development

• Make it easy to add new features
• Features should be in a small number of components

9/19/24 CSCI2340 - Lecture 7 6

Design for Risk

• Identify potential risks
• Requirements, specifications, skeptic

• Address these risks
• Either isolate them

• Make it easy to try alternatives
• Make it easy to change solutions in the future as needed

• Or design the system around a solution for them
• Concentrate the design on the risk

• Prototyping to check out potential solutions
• Ensure design will work with test system

9/19/24 CSCI2340 - Lecture 7 7

Identifying Risks
• What can go wrong (skeptic)

• Always be skeptical of your own code (and others)
• What do you not understand

• How to implement something
• How complex some code is

• How long something it will take to implement
• How long code will take to run
• How large data might be
• Whether something will work or not

• External assumptions that might change
• User interface risks

• The user interface is going to change
• Competitive risks
• Personnel risks

9/19/24 CSCI2340 - Lecture 7 8

Design for Security, Privacy & Ethics
• What data needs to be secured

• Or kept private
• Or is legally restricted in some way
• Or is company confidential

• Isolate that data in one component
• Even if it’s a separate component just for the data
• Then securing the data involves a single component
• Keep it in a single component as you break down the design

• What are the ethical risks of your system
• Difficult to determine how the system will eventually be used
• But you can take a first step
• Appropriate checking and feedback mechanisms in the initial design
• Can these be avoided

9/19/24 CSCI2340 - Lecture 7 9

Design for Team Development
• Each team member should have their own code / components

• Independence improves programmer efficiency
• Independence allows asynchronous development
• Allow individual testing, debugging
• Addressing the strengths of the team

• Well-defined interfaces between people
• You know precisely what to code
• Know how to use other’s code
• Others know how to use what you code
• But you should not need to know the others actual code

• Number of components vs team size
• Ensure there is a components for each team member
• Can have additional components
• If fewer, ensure the components are separable

• Multiple team members on one component -> component can be split

9/19/24 CSCI2340 - Lecture 7 10

Correct vs Incorrect Designs
• Almost any design can be made to work
• That doesn’t make it correct however

• Addressing these design goals makes life easier
• Initially (creating the system)
• More importantly as the system evolves & is extended and maintained

• A good design can cut the workload significantly
• Half the amount of code
• Less refactoring and rewriting needed
• Less time adding new features (easier to evolve)
• Easier to debug (finding and isolating problems)
• Easier to maintain and evolve
• Easier to test and deploy

9/19/24 CSCI2340 - Lecture 7 11

EXERCISE

• Let’s assess our initial programming efforts
•We will split into small groups (<4). Within each group show

each other the initial version of your programming
assignment and provide feedback to the others.
• Feedback should be constructive
• Get ideas from others for your own program
• Give others ideas on how theirs might be improved

• 10 minutes

9/19/24 CSCI2340 - Lecture 6 12

Approaches to High-Level Design
• First step: Identify components
• Architectural components are a starting point
• Break down components into subcomponents
• Identify necessary components based on goals
• Think in terms of packages or modules or processes

• Keep breaking down components until
• Component can be handled by an individual or two
• Component implementation does not affect the rest of the system
• Component implementation not affected by rest of system
• Component is a single package or module or service
• Component is well understood
• The overall design is understood

9/19/24 CSCI2340 - Lecture 7 13

Component Selection
• Top-level components reflect the software architecture

• Reflect the process structure
• Separate architectural components are separate
• Break these components down into subcomponents as needed
• Top-down approach to finding components
• Find commonalities (DAG, not a tree)

• Isolated elements should be in a single component
• Add these as components
• Isolated for maintenance (OS, UI, DBMS dependencies)
• Isolated for evolution (interface for new features)
• Isolated for risk (unknown algorithms)
• Bottom-up approach to finding components

• Shared data structures should be in a single component
• But it should be represented as functionality (not directly accessible)

9/19/24 CSCI2340 - Lecture 7 14

Component Selection (cont.)
• Complex functionality should be in a single component
• Complex algorithms as well
• These are likely to change over time

• New features should be easy to add
• Adding the feature changes only one component
• The feature might be added as its own component

• That should fit into the overall design
• If not a single component, then a small set of components

• Front end + back end on web application
• No potential feature should affect a large set of components

• Components can be assignable to team members
• Either individually or in small groups
• Inner workings do not affect the rest of the system

9/19/24 CSCI2340 - Lecture 7 15

Component Description
• Goal and purpose of each component

• Name
• Single short phrase or sentence

• Clear, meaningful
• Avoid ANDs (two components), etc.

• Once you know the components you can define them in detail
• What is important is the component interface

• How the component interacts with other components
• What it provides; what it requires

• High level design means defining interfaces
• As well as identifying the components

• The component implementations are mere details
• As long as we are satisfied that the implementation can be done

• The interfaces are the design

9/19/24 CSCI2340 - Lecture 7 16

Interfaces

• High Level Design is the design of Interfaces
• Each component needs an interface
• How it is used by other components
• What it can and cannot do

• The set of component interfaces is the high-level design
• Concentrate on the interfaces before implementation
• Both in what is provided
• And in what is needed by others
• Have a complete set of interfaces before doing coding

9/19/24 CSCI2340 - Lecture 7 17

Interface Goals
• Provide a concrete definition of the component

• Understanding of what is needed and what is provided
• Enable others to use the component

• Without knowing its internals
• Develop code even before component is available
• Develop test cases
• Write a mocking library to emulate component

• Ensure the design is correct
• Ensure you can implement each interface function
• Easy to change an interface while doing design
• Finish the interfaces before coding
• Check that all specifications can be met
• Ensure that other components have all they need

9/19/24 CSCI2340 - Lecture 7 18

Interface Goals

• “Interface” is defined loosely
• Can be interface class, set of calls, a set of messages, command line

options, RESTful urls, …
• Can be bi-directional

• Often includes callbacks to offer functionality

• Interface Definitions
• Signatures with meaningful names and types

• For each method, function, message
• Includes descriptions of functionality
• Includes error handling

• Exceptions, what happens if …

9/24/24 CSCI2340 - Lecture 7 19

Interface Design
• Provide the needed functionality
• Keep it as simple as possible

• Single interface class, possibly with inner interfaces
• Shouldn’t be a large set of classes
• Shouldn’t be a hierarchy (these are represented by the root)

• Small set of methods or functions or messages
• Minimum parameters, simple types
• Not fields or variables
• Minimize constraints on ordering, call sequences, etc.

• Provide room for expansion
• Identify possible future classes/methods/messages

• What is going to be needed for evolution and maintenance
• Its okay to define interfaces that won't be implemented right away
• Its okay to include low priority functions that won’t be implemented right away

9/19/24 CSCI2340 - Lecture 7 20

Interface Design
• Document the interface

• Provide a description of each element
• Parameters, results, what it does

• Provide constraints
• What is expected of the inputs
• What must be done before the element is invoked
• What outputs are given under what circumstances

• Include error handling
• What happens if inputs don’t match constraints
• What exceptions can be thrown
• What happens if remote server fails

• The interface will change
• Implementation will require changes, additions, deletions

• Negotiations between implementers and clients
• Needs of both can change over time
• Interfaces will get more complex over time
• Changes may require work in other components (avoid)

9/20/24 CSCI2340 - Lecture 7 21

Representing a High-Level Design

• Goals
• Define the components and their interfaces
• Represent these without doing the implementation
• Provide a basis for detailed design and coding

• API-based Design (for each component)
• Application Program Interface

• Defines calls and requests
• Defines data formats
• Defines conventions, call orders, ..
• Defines callbacks

• This is what we need: how to represent it?

9/19/24 CSCI2340 - Lecture 7 22

UML-Based Design Representation

• UML class diagrams can be used to represent a design
• Components can be represented as classes
• Components can be represented as packages
• Methods in the classes represent the interface
• Might not actually be methods

• Links represent potential component interactions
• These are language independent
• UML does not commit to a language

9/19/24 CSCI2340 - Lecture 7 23

UML Class Diagram Basics

• Classes
• Name, attributes, operations

• Inheritance links
• Generalization

• Dependency links
• Associations
• Aggregations
• Dependencies

9/19/24 CSCI1951U - Lecture 8 24

UML for High-Level Design

• Meaningful information
• Fields can give a sense of the class (but won’t be used)
• Links imply usage connections, not contained data
• Basic methods provide the interface definition

• Diagram in levels
• Keep size of each level small (5-10 classes)

• Then use a separate level to define those classes
• Facades, interfaces represent a level

• Keep the diagrams simple
• Gives a better sense of the design than 100 interfaces

• Easier to implement as well

9/19/24 CSCI1951U - Lecture 8 25

UML For High-Level Design

• UML diagram can be used to sketch out the design
• Easier to change then a text or code file
• Easier to move things around for grouping, organization

• Start with all possible component candidates
• Group these in a logical fashion & eliminate overlaps
• Hierarchies represented by their root or interface
• Choose one set where things overlap
• Common elements merged using a façade
• Internal components removed

• Continue until you have a small number left

9/19/24 CSCI1951U - Lecture 8 26

System to Design

• I want to control my HO trains from my computer
• Creating hardware

• Embedded sensors in tracks
• WIFI control of switches, signals

• Using hardware
• WIFI control of engines

• Want to direct trains to follow defined path
• Want to ensure safety
• Avoid collisions, derailments

• Want a current display of everything
• Want detailed control from the computer

• Smart HO Railroad Environment (SHORE)

9/20/24 CSCI2340 - Lecture 8 27

Software Architecture for SHORE

9/20/24 CSCI2340 - Lecture 8 28

UML Design Diagram for SHORE

9/20/24 CSCI2340 - Lecture 8 29

• Added Control component SHORE
• Create Façade Components

• View, Vision, Safety, Planning, Network, Model
• Added classes for model data needed by others

• Signal, Engine, Sensor, Block, Switch
• Note this doesn’t include interfaces

• But these could be added

UML-Based Design Representation
• Advantages
• Useful for initial exploration
• Can use graphic editor to explore possibilities
• Result is a nice visual representation of the system
• Can be done on paper or using UML editors

• Disadvantages
• Adding methods/fields is messy

• Editors; syntax
• Probably won’t have a complete interface
• Not something one can compile against or work with
• Won’t be part of the actual system

• Will get out of date as system evolves
• Won’t represent the current design

9/19/24 CSCI2340 - Lecture 7 30

Language-Based Design
• I prefer to work in a programming language

• Probably the implementation language (not necessary)
• Editors available
• Syntax well understood

• Create a design that can be used in the implementation
• Starting point for the implementation
• Code against the interfaces
• Design evolves with implementation – always up to date

• But still simple enough to be easy to change as part of design
• Adding, removing, changing components
• Adding, removing, changing methods
• Can ”play” with it as we do with UML diagrams

• Multiple approaches to this
• We’ll cover these in the next class

9/24/24 CSCI2340 - Lecture 7 31

Language-Based Design
• Pros
• You can use it as the start of the implementation

• It in the target language
• When it is complete and ready

• Code against the design directly
• Becomes part of the system
• Evolves with the system

• Done using known editors, syntax, …
• Cons
• You need to know the target language

• We’ll cover choice of language next time
• Not all languages support clean interfaces
• Not all interfaces are language oriented (e.g., messages, RESTful)

9/25/24 CSCI2340 - Lecture 7 32

PROJECT HOMEWORK
• Start thinking about the high-level design for your project
• How would you break it up: what are the components
• Try allocating specification items to components
• Possibly use a UML diagram to play with possibilities

• Install UMLet, argouml, umbrello
• Web-based UML tool (visual pradigm, creately)

• GitHub repo should include
• Requirements, specifications, architecture, code style
• Simple use of GitHub Issues

• Project Presentations on Tuesday 10/8
• 10 minute presentations (not too detailed)

9/19/24 CSCI2340 - Lecture 7 33

Programming Assignment Homework

• Update your programming assignment hand in
• Using feedback from today’s breakout session
• Ensure it uses project code style
• Ensure there is a header comment, meaningful names
• Ensure naming conventions work
• Name implies its kind and definition location
• Easy to locate items in the file

• You might try creating a UML diagram for the assignment

9/19/24 CSCI2340 - Lecture 7 34

Further Reading

• UML: IBM UML Introduction
• Textbook, chapter 6

9/19/24 CSCI2340 - Lecture 7 35

https://developer.ibm.com/technologies/web-development/articles/an-introduction-to-uml/

