%0 FI WE "THE m WORD THAT USUALLY FOLLOWS IT... . BUILD AN SQL WHAT HE SAID OR
. \ el . IS IT SOMETHING

(WHAT COLOR DO YOU
WANT THAT DATABASE T

ot - : HE SAW IN A TRADE
"WPICAL" SENTENCE. MAGAZINE AD?

g
z
H
i
2
?
H
4
2
:
-
3
5
:
L
~N
¥

|'ve spent my entire |ife
programming tons of
variables. Here's what's
trending now: making
everything

immutable,

constant!

Okay, they call it 'thread safe'!
But, what am | supposed to do
with all these variables?!?

Daniel Stori {turnoff.us}

High-Level Design

Last time we talked about high level design

* Things to look for
* Thinking about components
* Noted that the component INTERFACES were the design

We talked about selecting component
* For the components

Next, we need to define their interfaces
* Messy to do in UML; easier to do in a language

This is a continuation
* More things to consider in the design
* Looking ahead to using the design

* Topics
* Language-based representatior
* Message-based interfaces
* Choice of language
* Using external
Designing

Language-Based Interface-Basec

Each component is represented by a (Java) interface
* Component represents a class

* Single interface file for a component

* The whole design is represented as interfaces in Java

Data passed between components is defined
* Possibly defined as inner interface to compo

* Possibly with its own component / interf

* Everything shared only through th

Each call-back from a compc

Rich Interface Theories for ComEonent-based Design
Dirk Beyert, Arindam Ehakrabarti > *I;uca de Alfaro **, Tho:nas

Henzinger *t, Marcin Jurdziriski ¥,
o P

Software Module Inte

Interface-Based Design fc

public interface ShoreModel {

Collection<ModelSwitch> getSwitches();
Collection<ModelSignal> getSignals():
Collection<ModelSensor> getSensors();
Collection<ModelBlock> getBlocks();
Collection<ModelEngine> getEngines():

void addModelCallback(ModelCallback cb):
void removeModelCallback(ModelCallback cb);

interface ModelCallback {
void sensorChanged(ModelSensor s):
void switchChanged (ModelSwitch s):
void signalChanged (ModelSignal s):
void blockChanged(ModelBlock b);
void engineChanged (ModelEngine e):

}
enum ModelSensorState { OFF, ON, UNKNOWN }

interface ModelSensor {
ModelBlock getBlock():
ModelSensorState getSensorState():

}
enum ModelSwitchState { N, R, UNKNOWN }

interface ModelSwitch {
ModelSensor getNSensor();
ModelSensor getRSensor();
void setSwitch(ModelSwitchState s);
ModelSwitchState getSwitchState();

enum ModelSignalState { OFF, GREEN, YELLOW, RED }

interface ModelSignal { ...

}
enum ModelBlockState { EMPTY, INUSE, UNKNOWN }

interface ModelBlock { ... }
interface ModelEngine { ... }

} // end of interface ShoreModel

Code Bubbles (Eclipse) for shore

package edu.brown.cs.spr.shore.iface;

import java.io.File;
import java.util.Collection;

public interface IfaceModel

{

Collection<IfaceSwitch> getSwitches();
Collection<IfaceSignal> getSignals();
Collection<IfaceSensor> getSensors();
Collection<IfaceTrain> getTrains();

void reset();

void loadModel(File description);

} // end of interface IfaceModel

/* end of IfaceModel.java */

IfaceBlockW <FILE>

®

package edu.brown.cs.spr.shore.iface;
import java.util.List;

public interface IfaceBlock
{

enum BlockState { EMPTY, INUSE, PENDING };

BlockState getBlockState();
void setBlockState(BlockState state);

List<Integer> getEntrySensors();
List<Integer> getExitSensors();

} // end of interface IfaceBlock

/* end of IfaceBlock.java */

IfaceSwitch® <FILE>

LIRS

package edu.brown.cs.spr.shore.iface;
s

public interface IfaceSwitch

{

enum SwitchSetting { N, R };

SwitchSetting getSwitchSetting();
void setSwitch(SwitchSetting n);

IfaceBlock getEntryBlock();
IfaceBlock getNBlock();
IfaceBlock getRBlock();
int getControllerId();
int getControllerSwitch();

} // end of interface IfaceSwitch

/% end of IfaceSwitch.java */

IfaceSignalP> <FILE>

B e
package edu.brown.cs.spr.shore.iface;
s

public interface IfaceSignal
{

enum SignalState { RED, GREEN, YELLOW };
boolean getSupportsYellow();

void setSignalState(SignalState state);
SignalState getSignalState();

IfaceBlock getExitBlock();
IfaceBlock getEntryBlock();

int getControllerId();
int getControllerSignal();

} // end of interface IfaceSignal

/* end of IfaceSignal.java */

& epeople
{12, shore:edu.brown. cs. spr.shore
@docs

Interface-Based Design for

XX

Code Bubbles (Eclipse) for shore

p i eDiagramb P eModel>

® o g
public interface IfaceDiagram extends IfaceConstants public interface IfaceModel
{
] ®
String getld(); Collection<IfaceSwitch> getSwitches();
® o u
Collection<IfacePoint> getPoints(); Collection<IfaceConnection> getConnections();
® o
Collection<IfaceSensor> getSensors(); Collection<IfaceSignal> getSignals();
e T
Collection<IfaceSignal> getSignals(); Collection<IfaceSensor> getSensors();
o o
Collection<IfaceSwitch> getSwitches(); Collection<IfaceBlock> getBlocks();

" B e
Collection<IfaceBlock> getBlocks(); Collection<IfaceDiagram> getDiagrams();

T
= P
= n
public interface IfaceSignal extends IfaceConstants
{
- -
= ShoreSignalType getSignalType();
IfaceBlock
a . - . R IfaceConnection
void setSignalState(ShoreSignalState state); IfaceConstants
IfaceDiagram
L e o IfaceEngine
= ShoreSignalState getSignalState(IfaceModel
IfaceNetwork
IfacePoint
e -
@a - IfaceSafety
IfaceBlock getFromBlock(); IfaceSensor
IfaceSignal
- IfaceSwitch
= Collection<IfaceConnection> getConnections();
“List<Ifacesensor> getstopsensors();) neterk
@l ‘ 3 safety
=] % shore

P P

B e B e
public interface IfaceNetwork extends IfaceConstants public interface IfaceBlock extends IfaceConstants
{ {

&
- ShoreBlockState getBlockState();
void setSwitch(IfaceSwitch sw,ShoreSwitchState set);

o o
. void setBlockState(ShoreBlockState state);
setSignal(IfaceSignal sig,ShoreSignalState set);

-
e TfaceBlock getPendingFrom();
void setSensor(IfaceSensor sen,ShoreSensorState set);

-
boolean setPendingFrom(IfaceBlock blk);

&
void sendDefSensor(IfaceSensor sen,IfaceSwitch sw,ShoreSwitchState state);

. T
void sendStopTrain(IfaceEngine train,boolean emergency); Collection<IfaceConnection> getConnections();

P o
void sendStartTrain(IfaceEngine train); String getId();

// end of interface IfaceNetwork

P

o
public interface IfaceSwitch extends IfaceConstants
{

@ e
& ShoreSwitchState getSwitchState();

@
a void setSwitch(ShoreSwitchState n);

@ e
String getId();
e
2 IfaceSensor getNSensor();
& o
a IfaceSensor getRSensor();

e
2 IfacePoint getPivotPoint();

by
byte getTowerId();

P i rainsh

®
P! public interface IfaceTrains

public interface IfaceSafety extends IfaceConstants {

{

n -
IfaceEngine createTrain(String name);

boolean setSwitch(IfaceSwitch sw,ShoreswitchState state
boolean setSignal(IfaceSignal ss,ShoreSignalState state);

» -
L IfaceEngine findTrain(String name); 2

}

// end of interface IfaceSafety

n
IfaceEngine findTrain(SocketAddress sa); o

&
Collection<IfaceEngine> getAllEngines();

n
IfaceEngine i If; engine, ess sa);

? Resource Line

B
void addTrainCallback(TrainCallback cb);

edoc
@Launch Configurations

P

B
public interface IfaceSensor extends IfaceConstants
{

[
IfaceSwitch getSwitchN();
[

IfaceSwitch getSwitchR();

[
IfaceConnection getConnection();

>
IfaceBlock getBlock();

-
ShoreSensorState getSensorState();

> -
void setSensorState(ShoreSensorState state);

edul
®

P

{

I

I
C

void

ve

boolean isStopped();

> brown® csh sprb shoreb ifaceb Ifacel

ublic interface IfaceEngine

faceBlock getEngineBlock();
faceBlock getCabooseBlock();
ollection<IfaceBlock> getAllB]

id enterBlock(IfaceBlock blk|
oid exitBlock(IfaceBlock blk)

boolean isEmergencyStopped();

ve

oid stopTrain();

void emergencyStopTrain();

ve

S
St

ve
ve
ve

oid startTrain();

tring getTrainName();
ocketAddress getEngineAddress

oid setSpeed(int speed);
oid blowHorn();
oid ringBell();

// end of interface If

{

Advantages of Interface-Based Design

Provide a solid understanding of the components
* And their interactions before they are written
* In the target language, in a single location (package)

Can explore interface possibilities
* Experiment with different alternatives, methods, interfaces
* Easy to edit, change: no real commitment at this point
* More familiar than working in UML

Provide a basis for implementation of the components
* Result becomes part of the system
* Maintained as the system evolves

Provide a clean separation between components in th
* All interactions between components are through t
* Can compile the rest in almost any order

Provide a location for documenting the
* Javadoc of the interface

Can provide dummy / stub i
Can write test cases (agai

Consistent appr

Disadvantages of Interface-Based Desig

e Commits the choice of language
* Not all interfaces are language-based
* Can rewrite the interface in actual target language (not that much to do)

* Can make implementation a bit messier
* Trivial classes, public methods
* Need factory methods which might require reflection
* Need to cast interface to implementation class internally
* Returning collection of interfaces from collection of implementations is non-
* Interface for messages requires corresponding code

* Might require a hierarchy of interfaces
* To add functionality without changing existing code
* JcompFile, JcompExtendedFile

* Changing an interface can affect many compone
* Especially call-back interfaces
* Default methods in Java now make thi

* Changing the implementation mi
* Even if backward compa

Interfaces will grow a

Facade-Based Design

* A component is represented by a small set of public classes and i

* |Ideally a single class that delegates most of the work
* This represents the interface to the component

* And a set of interfaces or abstract classes exposing pas

» All other classes in the package are non-public
* The bulk of the work of the component is done i

 Component implemented in a single pack

* Example: Code Bubbles

Core (3 packages) includes a s

Each component outside ¢
* Constants defines int

All access is throu

Facade-Based Design fo

package edu.brown.cs.shore.view;
import edu.brown.cs.shore.ifaces.ShoreModel;
public class ViewFactory

public ViewFactory(ShoreModel model)
=}

public void startDisplay()

ek
} // end of class ShoreModel

Code Bubbles (Eclipse) for shore

O <

K */
o ModelConstants. java */
e */
Constants for the SHORE model */
* */
e Copyright 2023 Brown University — Steven P. Reiss */

Copyright 2023, Brown University, Providence, RI.

All Rights Reserved

FEFHFFFFFTFF

b
pe
l« BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
*

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose other than its incorporation into a
commercial product is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting

(¢ documentation, and that the name of Brown University not be used in
* advertising or publicity pertaining to distribution of the software
* without specific, written prior permission.

* BROWN UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL BROWN UNIVERSITY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.

KKK KKK KK KKK KKK KKK KKK KR

!
\

ackage edu.brown.cs.spr.shore.model;

ublic interface ModelConstants

nterface ModelSwitch { }

nterface ModelSensor { }

nterface ModelTrain { }

nterface ModelSignal { }

ModelFactory <FILE>
g

if (the_factory = null) {

8 the_factory = new ModelFactory();

return the_factory;
}
8
/% */
/% Setup methods */
/% */

public void resetModel()
g

8 // reset everything to off
// if file has changed, reread the model file
// run initialization sequences to find states
// check connectivity
// try to locate trains

public void loadModel(File description)
g

model_file = description;
Element xml = IvyXml.loadXmlFromFile(model_file);

ShoreLog. logD("Loaded model: " + IvyXml.convertXmlToString(xml));

8 // load model from file
// setup all switches, signals, trains, sensors

/%
/% Access methods
/%

*/

*/

public Collection<ModelSwitch> getSwitches()
g

return new ArrayList<>();

public Collection<ModelSignal> getSignals()
g

return new ArrayList<();

public Collection<ModelSensor> getSernsors()
g

return new ArrayList<();

&, epeople
ff2) shore:edu.brown.cs.spr.shore

@edocs

Advantages of Facade-Based Desigr

* Good match to layered systems
* A facade can represent a layer

* Good match to extensible-comnr
e Components implemente

* No need for odd fac

Disadvantages of Facade-Based Des

Harder to implement components in parallel
* Need inner layers defined to compile & write the outer

Not as clean a separation as interface-based de

Can be tricky to achieve an implementati
* Linear order for compilation, depende

No central description of the sys

More difficult to underste

Interface mixed wit
* Too easy to exp

[

Message-Based Interfaces

GET/ POST/

. PUT / DELETE
l—— —_—)
e &
1§ J XML
ient

REST API

* Choose a messaging framework
* Preferably use an existing one (JMF, Ros, ...)
e HTTP: RESTful interfaces
e Code Bubbles: mint

* Define a set of messages (and responses
This is the interface

Akin to defining function or me
Definition should include e
Definition should incluc
Definitions should

ptional parameters on messages

 Must be c

Message Interface in SHC

byte []
byte []
byte []
byte []
@ oo

byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
_byte 8l
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []
byte []

byte []

byte []

&
}

LOCOFI_START_ENGINE_CMD
LOCOFI_STOP_ENGINE_CMD
LOCOFI_FWD_DIR_CMD
LOCOFI_REV_DIR_CMD

LOCOFI_FWD_LIGHT_OFF_CMD
LOCOFI_FWD_LIGHT_ON_CMD
LOCOFI_FWD_LIGHT_BLINK_CMD
LOCOFI_REV_LIGHT_OFF_CMD
LOCOFI_REV_LIGHT_ON_CMD
LOCOFI_REV_LIGHT_BLINK_CMD
LOCOFI_HORN_ON_CMD
LOCOFI_HORN_OFF_CMD
LOCOFI_BELL_ON_CMD
LOCOFI_BELL_OFF_CMD
LOCOFI_RPM_REPORT_CMD
LOCOFI_SPEED_REPORT_CMD
LOCOFI_QUERY_LOCO_STATE_CMD
LOCOFI_CONNECT_SSID_CMD
LOCOFI_DISCONNECT_SSID
LOCOFI_REBOOT_CMD
LOCOFI_VERSION_CMD
LOCOFI_HOSTNAME_CMD
LOCOFI_SETTINGS_READ_CMD
LOCOFI_SETTINGS_WRITE_CMD

LOCOFI_SET_SPEED_CMD
LOCOFI_HEARTBEAT_ON_CMD
LOCOFI_HEARTBEAT_OFF_CMD
LOCOFI_FACTORY_RESET_CMD
LOCOFI_QUERY_ABOUT_LOCO_CMD
LOCOFI_EMERGENCY_STOP_CMD
LOCOFI_EMERGENCY_START_CMD
LOCOFI_GET_CONSIST_CMD

LOCOFI_CREATE_CONSIST_LEAD_CMD
LOCOFI_CREATE_CONSIST_HELPER_CMD

LOCOFI_DELETE_CONSIST_CMD
LOCOFI_SPEED_TABLE_READ_CMD
LOCOFI_SPEED_TABLE_WRITE_CMD
LOCOFI_SPEED_TABLE_UPDATE_CMD
LOCOFI_SPEED_TABLE_DELETE_CMD
LOCOFI_MUTE_VOLUME_CMD
LOCOFI_UNMUTE_VOLUME_CMD
LOCOFI_HIGH_FREQ_OP_OFF_CMD
LOCOFI_HIGH_FREQ_OP_ON_CMD

LOCOFI_HELPER_CMD_SS

LOCOFI_HELPER_ACK_CMD_ES

= {ox00,
= {oxe0,
= {oxe1,
= {ox01,

= {ex03,
= {oxe3,
= {ox03,

{oxes,
{0x09,
{0x09,
= {0x0A,
= {0x08B,
{exec,
{oxeD,
{oxen,

{0xeE,
= {oxeF,
{0x0F,
{ox1e,
{ox11,
{ox12,
{ox12,
= {ox13,
= {ox14,
= {ox14,
{0x15,
{ox16,
{0x16,
= {ox16,
= {0x16,
{ox17,
{ox17,
{ox18,
= {ox18,

//{0x7C} is reserved for messages from lead to helper only
= {0x7C, 0x00}; //stop for safety; third byte contains OFF or ON

// end of interface NetworkLocoFiMessages

edul brownP csP sprP shoreP networkP NetworkLocoFiMessagesP
interface NetworkLocoFiMessages

0x01};
0x00};
0x00};
0x01};

0x00};
0x01};
0x02};
0x00};
0x01};
0x02};
0x03, 0x01};
0x03, 0x00};
0x04, 0x01};
0x04, 0x00};
0x00};
0x00};
0x00};
0x00};
0x01};
0x00};
0x00};
0x00};
0x00};
0x01};

0x00, 0x00};
0x01};
0x00};
0x00};
0x00};
0x00};
0x01};
0x00};
0x00};
0x01};
0x00};
0x00};
0x01};
0x02};
0x03};
0x00};
0x01};
0x00};
0x01};

//{@x7D} is reserved for (asynchronous) ack messages from helper to lead
= {0x7D, @x00}; //engine state; third byte contains the state

//the second argument 0@ is for stop
//the second argument 01 is for resume

//only applicable for sound upgradeable modules
//only applicable for sound upgradeable modules

4

edul brown® csP sprP shoreP networkP NetworkControlMessagesP

linterfac
{ Click to begin search starting here

® e
byte CONTROL_HEARTBEAT

(byte) oxof; // turn on/off heartbead

byte CONTROL_REBOOT = (byte) @xda; // restart 5
byte CONTROL_QUERY = (byte) 0x40; // ask for id
byte CONTROL_RESET = (byte) 0x41; // reset sensors, etc. 2
byte CONTROL_SYNC = (byte) 0x42; // ask for settings of sensors, switches a
byte CONTROL_SETSWTICH = (byte) 0x43; // set switch to state E
byte CONTROL_SETSIGNAL = (byte) @x44; // set signal to stat 2
byte CONTROL_DEFSENSOR = (byte) 0x45; // assoc sensor with switch state
byte CONTROL_SETSENSOR = (byte) 0x46; // note sensor state 2
byte CONTROL_DEFSIGNAL = (byte) 0x47; // set type of signal o
m

byte CONTROL_ID = (byte) 0x50; // this is our ID 2
byte CONTROL_SENSOR = (byte) 0x51; // sensor set to value @
byte CONTROL_SWITCH = (byte) 0x52; // switch set to value .
byte CONTROL_SIGNAL = (byte) 0x53; // signal set to value =
byte CONTROL_ENDSYNC = (byte) 0x54; =

® e
byte MESSAGE_ALL

0x10;

byte MESSAGE_OFF 0x0;

byte MESSAGE_ON = ox1;
byte MESSAGE_UNKNOWN = 0x2; S
byte MESSAGE_N = oxe;
byte MESSAGE R = ox1; s
byte MESSAGE_RED = ox1;
byte MESSAGE_GREEN = ox2;
byte MESSAGE_YELLOW = Ox3: .
byte MESSAGE_SIGRG = 0x0; =
byte MESSAGE_SIG_RGY = Ox1l: .
byte MESSAGE_SIG_RG_ANODE = 0x2;
MESSAGE_SIG_RGY_ANODE = 0x3;

Pros and Cons of Message Interfaces

e Easy to change, augment, add new

* Limited applicability
* Between-process, more difficult within a process
* Use callbacks within a process IS REST STILL A

. . . . ?
* Handles front-back end in web/mobile applications RELEVANT AL STYLES

* Handling concurrent messages and replies car
* Replies tend to be asynchronous
* Replies can always fail

e Can/should component process nr
* For separate users
* For the same user

* Tendency to avoid dc
* Requires a mess

9/24/24

ve

0.0
N =
s gy D2 S T
VisualBasic! = &
\n 2! CobolPrototy

Y= Assembly

gy
crnptng

De
: MMpZFadigh :

Ruby
g Clojure.

[~
.“‘g

1Java

1

LA

bVIEW
Declarat

Logic-based
Lal

Languages for Large Systems

[4
erpreted

Int

I’'ve used Java for my examples
* Right now for language-based design, later for coding
Object-oriented languages work for large systems
* Provide nice localized information hiding
* Much cleaner than procedural or functional representations: C with ADTs (Classes)
* A good way of thinking about components (interface vs implementation)
* Consistent approach (everything is done with objects)
Interfaces are a natural part of the language
Packages provide a convenient way of representing a compor
Common interface package provides a representation o

C# is roughly equivalent to Java

C++ can be used if careful (effectivel
Other modern languages (Go,

Web & mobile languages (D

Facades & interfaces
* Butcanbem

derstand what you want from the programming language

Large-Scale PL Requirements

* Language must be supported over time
* Relatively stable and upward compatible

* Language evolves to match current programming style and issues
* Can be good or bad — language can get too complex

* Libraries and other components are rich, stable, and supported

* |DEs and debugging are well-supported
e Coding, navigating, discovery, debugging, compiler feedback

* Avoid extensions, especially non-standard ones

* Language must be compiled (catch bugs early)
* With immediate error feedback from the IDE

* Language must be strongly typed
* Types are a form of documentation and checking
* Types ensure interfaces are used correctly
* Typing moves error to compile time rather than run time

* Language must be modular (avoid name conflicts

* Language must support objects, classes, and i
* Object-oriented design supports the
* Objects provide information hidin
* Large systems are best mode

9/25/24

Large-Scale PL Requirements Continued

* Language should be easy to read

* Language must support information hiding
e Private or local data & code
* Individual modules with import/export
» Different levels of access

* Language should support concurrency
* Explicitly or implicitly
* Preferably in the language, not in a library

* Language should support documentatio

* Language should be compatible wi
e That you will or might need
e Most common libraries

Language must sup

Large-Scale PL Requirements Continued

Language should be one your team is comfortable with
* Learning to use a language effectively can take from 1 month to a year

Language should make it easy to write safe programs
» Safe memory [garbage collection] (Java, C#)
* Help check for null pointers (dart)
* Help check for memory ownership (rust)

What doesn’t matter
* Brevity (this can get in the way of readability)
* Ease of writing initial code
» Efficiency of implementation

What language should you use o
* |t should meet these constrai

* Choice of language is i

e Put the decision o

» Different lan

9/25/24

Multilingual Systems

 Common for large software systems today

* Each process can be in its own language
* Message systems usually support multiple languages
 HTTP messaging works everywhere

e Can mix multiple languages within a process
* Trickier, not recommended, but can be done

* Web applications generally imply diffe
* Front end versus back end

* Native phone apps generally in
» Different operating systen

* Choose most appropri
* But try to be co
e Mixing ha
* Develc

Designing Around What EXxists

* Don’t build everything from scratch
* Too much work, room for error, m
* Keep things simple

e Reuse the work of othe
* Where it simplifie

Framing That Resists Wind and Gravity

-t rfine e L
verd ey new

g one SIDEBAR web == v
oue- Lhraly “Mmake USE * ,,,m

Sta N d ad rd | /e d COd e «~ |Ibrarles.:{.‘commumb
—source=.

SO yware aPP"Ca‘fP'LiWI b
* Lots of “standardized” code exists B Ao ﬁg! -[ar

* Libraries that have evolved over time =~ %{O'éi'lml’»;wafﬁg?i‘i,alﬁi_.»
e Common subsystems that are W|dely us 2B

* Subsystems and libraries that are a
* Interfaces to existing framew

* OpenCV, SmartThings, Ch
* These are typically

* Well-debugge
* Docume

Common Domains

* Some aspects of programming occur over and ¢
* Low level: Data structures, Algorithms, Prope
* High level: Databases, Machine learni
* Lots of others that aren’t as commr

' -
- !.a 2 Y -4 .a il'\)l 1ne
D t b MarialDg CouchD8
a a a S e S cassandra
4 L —— - = :
) l ‘f' CUBRID

= OrientDB -
y ‘,L_ L
@neocy l MySaL”
&/ Firebird l-- W PostgreSOL

Anytime you need reliable, permanent data storage
* Long or short term, simple or complex

* Use a database system
* Difficult to corrupt
* Might need to be shared or distributed

* Not difficult to use
» After you’ve done it once

* Not slower than doing something specific f
* Separate process, optimized, good error
* Extensible to handle evolution, mai
* Writing to socket as fast or fas

Easy to migrate to more

TOP 10 FREE AND OPEN-SOURCE DATABASE
MANAGEMENT SOFTWARE SOLUTIONS

Lucene Flow

Search Tools

e Search capabilities

e Search over multiple documents
* Indexed by keyword or other feat
* Intelligent handling of multi

* Building and maintaini

e Libraries exist fo

Machine Learning

 Lots of machine learning algorithms

* Different domains require different approache
e Standard, tested implementations availab

* Use a standard ML library if your ¢
* Unless you are researching M
 WEKA, SPARK, and others
e Often want to run thi
* APl interfaces to

e Similar domai

Other Common Applications

* Math Packages
* LinPack, Array manipulation, Differential Equations

* Very hard to write safe code here — let someone else do it

prd
0
[
o
w2
e X

5 O ASYMMETRIC TYPE SCIENCE

* Jsoup, Beautiful soup, ...
* Java Editor framework
* Node packages (express,...) e AgEdUy
* Html plugins (jQuery,...) 5

CHANISM
A CENTER

ENCRYPTIC
C|PHERTE
COMPU;I'A

High-Level Design

e Reuse as much as possible
* Within a company, often reuse frameworks, libraries, code
* Develop an internal library (lvy)
* But balance benefits, costs, and risks

* Benefits
e Cost to implement yourself
e Cost to maintain and evolve

* Costs
Cost to learn (which can be high
Cost to adapt the external coc

Cost to distribute (differe
Cost to license

Might skew or di

o Software
Reuse

Risks with External Code ROS

Might need to commit the whole application
* Apache collections

Might have other dependencies
* Use Apache logger
* Lots of other libraries might be pulled in
» Different versions of other libraries, Java, JUni

Might evolve in a way incompatible with
Might have bugs or security flaws
Might not be maintained (lo

ented (difficult to use) [this is typical]

Might not be a g
t become problematic
ake distribution (both source and binary) difficult

Designing for Concurrency

parallelism

conc,urrean

e Goals

* Make best use of today’s hardware
* Multiple cores
* Networks of computers (clc
* Covering idle time
* Most time is spe
* Simplicity

performance { sca\qb]\'\’c\j

-

proxy reverse proxy

of this is implementation and comes later

Concurrency: Multiple Processes

* Independent processes that communicate
* Might run and read the result
* Might be message send and respons

* This is the easiest to design
* Each process is self co

* Limited interactior

* But not non
* Well-defi
* CP[

Concurrency: Background Tasks

e Use threads to support long-term work
e Don’t access the result until it is ready (futures)
e Threads are independent
» Use futures if they are available and work well in the languag
* Use thread pools to handle disparate work within a sy
* Examples: eclipse indexing; bubbles syntax fixing, se

* Use threads to support long-term 1/O

e Sockets:
* Thread to monitor server socket
* Thread to monitor each client sc

e Other I/O (COSE search, c
* Most of this is in the im

odels (e.g., JavaScript, Dart) new BackgroundTaskBui

* Hide the
= "ToastTask";

askEntryPoint = "

Concurrency: User Interface

e Swing/AWT thread handles all the Ul issues (imp
e Same for most Ul packages

* Most of a user-centric program is reacti
e User interface callbacks invoked in

Method calls on
installed listeners

Concurrency: Algorithmic

e Concurrent Algorithms & Data Structures

* When a particular task is expensive
* And the algorithm can be made cor

* Split a task into separate th
* Run those concurrentl
* Generally, need syr

 Think of th|s 3S

Concurrency in High-Level Design

e Start with a synchronous design
» Easier to reason about, design at a high level

* |dentify opportunities & needs for concurrency
* What level of concurrency is appropriate

e Concentrate first on separating processes
* Other decisions are really implementation detail Asynchronous vs Synchronous

* Identify shared data structures e
* These complicate concurrency codir
* Much easier to code if known i

* |dentify interfaces/classe
* Document these as tt

e |solate these in th
* |dentify oth

9/24/24

Programming Homework

* Consider how you would modify your program to:

* Rather that having properties on the screen determined either randomly or by user input, tie them to proces
e On Linux you can look at /proc
* On mac or Linux you can run ps and parse the input
* On windows you can run tasklist

* Examples of what can be done:
* Ball size relates to log(memory size); Ball speed relates to CPU usage; Ball color relates to # fil
* Update every 1-10 seconds, adding/removing balls as needed

* Issues
* Number of balls (400-900 processes); asynchronous running of ps

* Consider also how to modify your program so that:
* ltrunsin acircular window rather than a rectangular one

* Consider also how to modify your program to use
* Compute each ball’s next position separately

* Write and submit a description of what
* Don’t do the changes — just descri

* How modular was your origi
* How much could you r

Due Thursday (canv

PROJECT Homework

* Work on the high-level design
* Choose appropriate target language(s) (based on criteria in lecture
e Think about interfaces in those languages

* Initial high-level design due Tuesday 10/8

 Something that can be reviewed
e Can be just a set of components

Hand in through canvas (one per team)
Not a final design

Describe what you are buildi
Describe the high-level d
10 minutes (7 + 3 for

9/19/24

Research in High-Level Design

* Creating high-level designs using LLMSs or co

