
High-Level Design
Issues

CSCI2340: Software Engineering of Large Systems
Steven P. Reiss

9/19/24 CSCI2340 - Lecture 8 1

High-Level Design
• Last time we talked about high level design

• Things to look for
• Thinking about components
• Noted that the component INTERFACES were the design

• We talked about selecting component
• For the components

• Next, we need to define their interfaces
• Messy to do in UML; easier to do in a language

• This is a continuation
• More things to consider in the design
• Looking ahead to using the design

• Topics
• Language-based representations for defining component interfaces
• Message-based interfaces
• Choice of language (for implementation, but we use it in the design)
• Using external (open-source and other) code, packages and systems
• Designing for concurrency

9/19/24 CSCI2340 - Lecture 8 2

Language-Based Interface-Based Design
• Each component is represented by a (Java) interface

• Component represents a class
• Single interface file for a component
• The whole design is represented as interfaces in Java

• Data passed between components is defined with an interface
• Possibly defined as inner interface to component
• Possibly with its own component / interface
• Everything shared only through these interfaces

• Each call-back from a component is an interface
• Defined as inner interface to component
• More consistent than using function pointers, easier to extend

• Interfaces defined in a common package
• Separate from implementation packages
• Might later be augmented with common code (e.g., logging)

• Examples
• S6/common, Catre/catre, Rose/root, Eclipse (IClassFile, …), SHORE

9/24/24 CSCI2340 - Lecture 7 3

Interface-Based Design for SHORE

9/24/24 CSCI2340 - Lecture 8 4

Interface-Based Design for SHORE

9/30/24 CSCI2340 - Lecture 8 5

Advantages of Interface-Based Design
• Provide a solid understanding of the components

• And their interactions before they are written
• In the target language, in a single location (package)

• Can explore interface possibilities
• Experiment with different alternatives, methods, interfaces
• Easy to edit, change: no real commitment at this point
• More familiar than working in UML

• Provide a basis for implementation of the components
• Result becomes part of the system
• Maintained as the system evolves

• Provide a clean separation between components in the implementation
• All interactions between components are through the interfaces
• Can compile the rest in almost any order

• Provide a location for documenting the design
• Javadoc of the interface

• Can provide dummy / stub implementations (implementing the interface)
• Can write test cases (against the interfaces)
• Consistent approach to design (all object-oriented interfaces)

9/24/24 CSCI2340 - Lecture 7 6

Disadvantages of Interface-Based Design
• Commits the choice of language

• Not all interfaces are language-based
• Can rewrite the interface in actual target language (not that much to do)

• Can make implementation a bit messier
• Trivial classes, public methods
• Need factory methods which might require reflection
• Need to cast interface to implementation class internally
• Returning collection of interfaces from collection of implementations is non-trivial in Java
• Interface for messages requires corresponding code

• Might require a hierarchy of interfaces
• To add functionality without changing existing code

• JcompFile, JcompExtendedFile

• Changing an interface can affect many components
• Especially call-back interfaces
• Default methods in Java now make this a little easier

• Changing the implementation might need to change some interfaces
• Even if backward compatible

• Interfaces will grow over time
• Can become overly complex with time – design will no longer be as clean

9/24/24 CSCI2340 - Lecture 7 7

Façade-Based Design
• A component is represented by a small set of public classes and interfaces

• Ideally a single class that delegates most of the work
• This represents the interface to the component

• And a set of interfaces or abstract classes exposing passed data and callbacks
• All other classes in the package are non-public

• The bulk of the work of the component is done in these classes
• Component implemented in a single package or module

• Example: Code Bubbles
• Core (3 packages) includes a small set of public classes (< 20)
• Each component outside core has Constants interface and Factory class

• Constants defines interfaces for shared data, enumerations, callbacks, …
• All access is through these, not implementation classes
• Other interfaces can be defined if needed (generally in Constants)
• Standard interface to factory (setup/initialize)

9/24/24 CSCI2340 - Lecture 7 8

Façade-Based Design for SHORE

9/24/24 CSCI2340 - Lecture 8 9

Advantages of Façade-Based Design

• Good match to layered systems
• A façade can represent a layer

• Good match to extensible-component systems
• Components implemented directly

• No need for odd factory methods, easier to change
• Components are the implementation

• Easier to extend by adding new components
• Not as restricted as interface-based design

9/24/24 CSCI2340 - Lecture 7 10

Disadvantages of Façade-Based Design
• Harder to implement components in parallel

• Need inner layers defined to compile & write the outer ones
• Not as clean a separation as interface-based design
• Can be tricky to achieve an implementation ordering

• Linear order for compilation, dependencies
• No central description of the system
• More difficult to understand each component
• Interface mixed with implementation

• Too easy to expose the implementation
• Through the public methods of a component
• Too easy to add new public methods & complicate the interface

• Tendency to avoid documentation

9/24/24 CSCI2340 - Lecture 7 11

Message-Based Interfaces
• Choose a messaging framework

• Preferably use an existing one (JMF, Ros, …)
• HTTP: RESTful interfaces
• Code Bubbles: mint

• Define a set of messages (and responses)
• This is the interface
• Akin to defining function or method calls (documentation)
• Definition should include expected behavior
• Definition should include error behavior
• Definitions should be explicit (formats, options, etc.)

• Easy to allow optional parameters on messages
• Must be documented

• Can be a set of constants in an interface file
• Can be represented by a class that handles the messaging (BumpClient)

9/24/24 CSCI2340 - Lecture 7 12

Message Interface in SHORE

9/24/24 CSCI2340 - Lecture 7 13

Pros and Cons of Message Interfaces
• Easy to change, augment, add new
• Limited applicability

• Between-process, more difficult within a process
• Use callbacks within a process

• Handles front-back end in web/mobile applications
• Handling concurrent messages and replies can be messy

• Replies tend to be asynchronous
• Replies can always fail
• Can/should component process multiple messages at once

• For separate users
• For the same user

• Tendency to avoid documentation
• Requires a messaging architecture

9/24/24 CSCI2340 - Lecture 7 14

Languages for Large Systems
• I’ve used Java for my examples

• Right now for language-based design, later for coding
• Object-oriented languages work for large systems

• Provide nice localized information hiding
• Much cleaner than procedural or functional representations: C with ADTs (Classes)
• A good way of thinking about components (interface vs implementation)
• Consistent approach (everything is done with objects)

• Interfaces are a natural part of the language
• Packages provide a convenient way of representing a component
• Common interface package provides a representation of the design

• Other languages can be used as well (but often not quite as nicely)
• C# is roughly equivalent to Java
• C++ can be used if careful (effectively define interfaces; use safe pointers)
• Other modern languages (Go, Rust)
• Web & mobile languages (Dart, Swift, Android Java, JavaScript, TypeScript)
• Façades & interfaces can be created in any language

• But can be more difficult to hide the implementation
• Need control of visibility, import and export (as part of the language)

• Need to understand what you want from the programming language
• To choose the most appropriate language for your application

9/25/24 CSCI2340 - Lecture 7 15

Large-Scale PL Requirements
• Language must be supported over time

• Relatively stable and upward compatible
• Language evolves to match current programming style and issues

• Can be good or bad – language can get too complex
• Libraries and other components are rich, stable, and supported
• IDEs and debugging are well-supported

• Coding, navigating, discovery, debugging, compiler feedback
• Avoid extensions, especially non-standard ones

• Language must be compiled (catch bugs early)
• With immediate error feedback from the IDE

• Language must be strongly typed
• Types are a form of documentation and checking
• Types ensure interfaces are used correctly
• Typing moves error to compile time rather than run time

• Language must be modular (avoid name conflicts)
• Language must support objects, classes, and interfaces

• Object-oriented design supports the needed abstractions
• Objects provide information hiding
• Large systems are best modeled in an object-oriented fashion

9/25/24 CSCI2340 - Lecture 7 16

Large-Scale PL Requirements Continued
• Language should be easy to read
• Language must support information hiding

• Private or local data & code
• Individual modules with import/export
• Different levels of access

• Language should support concurrency
• Explicitly or implicitly
• Preferably in the language, not in a library

• Language should support documentation
• Language should be compatible with external libraries and systems

• That you will or might need for your application
• Most common libraries have APIs for a variety of languages, but not all

• Language must support your system
• Messaging
• Where it can run (bare hardware, browser, OS, mobile platforms, …)

9/25/24 CSCI2340 - Lecture 7 17

Large-Scale PL Requirements Continued
• Language should be one your team is comfortable with

• Learning to use a language effectively can take from 1 month to a year
• Language should make it easy to write safe programs

• Safe memory [garbage collection] (Java, C#)
• Help check for null pointers (dart)
• Help check for memory ownership (rust)

• What doesn’t matter
• Brevity (this can get in the way of readability)
• Ease of writing initial code
• Efficiency of implementation

• What language should you use on your project???
• It should meet these constraints

• Choice of language is important in long-lived, large systems
• Put the decision off as long as possible to better understand your needs
• Different languages might be used in different components

9/25/24 CSCI2340 - Lecture 7 18

Multilingual Systems
• Common for large software systems today

• Each process can be in its own language
• Message systems usually support multiple languages
• HTTP messaging works everywhere

• Can mix multiple languages within a process
• Trickier, not recommended, but can be done

• Web applications generally imply different languages
• Front end versus back end

• Native phone apps generally imply different languages
• Different operating systems; front end versus back end

• Choose most appropriate language for each component
• But try to be consistent
• Mixing has costs and risks
• Develop consistent naming conventions across the project

9/25/24 CSCI2340 - Lecture 8 19

Designing Around What Exists
• Don’t build everything from scratch
• Too much work, room for error, maintenance, risk
• Keep things simple

• Reuse the work of others where practical
• Where it simplifies your efforts
• Now and in the future

• Where the benefits outweigh the costs and risks
• There are always costs
• There are always risks

9/19/24 CSCI2340 - Lecture 8 20

Standardized Code

• Lots of “standardized” code exists
• Libraries that have evolved over time
• Common subsystems that are widely used
• Subsystems and libraries that are actively maintained
• Interfaces to existing frameworks

• OpenCV, SmartThings, ChatGPT, MongoDB, SQL, …

• These are typically (but not always)
• Well-debugged and tested
• Documented
• Maintained by others (less work for you)
• Generally, with a well-thought-out interface (API)

9/19/24 CSCI2340 - Lecture 8 21

Common Domains

• Some aspects of programming occur over and over
• Low level: Data structures, Algorithms, Properties
• High level: Databases, Machine learning
• Lots of others that aren’t as common, but still exist

• In these domains, it is generally better to use existing code
• Complex, tricky implementations
• Existing tools allow for evolution, increasing complexity
• Well-understood
• Standard interfaces

9/19/24 CSCI2340 - Lecture 8 22

Databases
• Anytime you need reliable, permanent data storage

• Long or short term, simple or complex

• Use a database system
• Difficult to corrupt
• Might need to be shared or distributed

• Not difficult to use
• After you’ve done it once

• Not slower than doing something specific for your system
• Separate process, optimized, good error checking and handling
• Extensible to handle evolution, maintenance
• Writing to socket as fast or faster than writing to disk

• Easy to migrate to more robust solutions as needed
• [SQLite] => MySQL => Commercial system (Oracle, DB2, SQL Server)
• MongoDB => Distributed MongoDB

• But
• Another point of failure, porting, and distributing software, …

9/19/24 CSCI2340 - Lecture 8 23

Search Tools

• Search capabilities
• Search over multiple documents
• Indexed by keyword or other features (e.g., code patterns)
• Intelligent handling of multiple keywords, occurrences, logic, …

• Building and maintaining an index
• Libraries exist for this purpose
• Lucene as a general (open-source, extensible) library
• Google search licensed for a particular domain or application

9/19/24 CSCI2340 - Lecture 8 24

Machine Learning
• Lots of machine learning algorithms
• Different domains require different approaches
• Standard, tested implementations available

• Use a standard ML library if your application uses ML
• Unless you are researching ML
• WEKA, SPARK, and others
• Often want to run this as a separate process
• API interfaces to LLMs (ChatGPT, Bard, …)

• Similar domains
• Computer Vision (OpenCV)
• Speech Generation and Recognition

9/19/24 CSCI2340 - Lecture 8 25

Other Common Applications

•Math Packages
• LinPack, Array manipulation, Differential Equations

• Cryptography
• Very hard to write safe code here – let someone else do it

•Web Scraping
• Jsoup, Beautiful soup, …

• Java Editor framework
• Node packages (express,…)
• Html plugins (jQuery,…)
9/19/24 CSCI2340 - Lecture 8 26

High-Level Design
• Reuse as much as possible

• Within a company, often reuse frameworks, libraries, code
• Develop an internal library (Ivy)
• But balance benefits, costs, and risks

• Benefits
• Cost to implement yourself
• Cost to maintain and evolve

• Costs
• Cost to learn (which can be high)
• Cost to adapt the external code to your code
• Cost to distribute (different licensing models)
• Cost to license
• Might skew or disrupt an otherwise clean design

• Might not fit into your design

9/19/24 CSCI2340 - Lecture 8 27

Risks with External Code
• Might need to commit the whole application

• Apache collections
• Might have other dependencies

• Use Apache logger
• Lots of other libraries might be pulled in
• Different versions of other libraries, Java, JUnit, …

• Might evolve in a way incompatible with your application
• Might have bugs or security flaws
• Might not be maintained (lose support)
• Might not be well documented (difficult to use) [this is typical]
• Might not be a good fit for your needs
• IP rights might become problematic
• Might make distribution (both source and binary) difficult

9/19/24 CSCI2340 - Lecture 8 28

Designing for Concurrency

• Goals
• Make best use of today’s hardware
• Multiple cores
• Networks of computers (cloud)

• Covering idle time
• Most time is spent waiting (UI, I/O operations)

• Simplicity
• Independent things can be independent: processes, sockets

• A lot of this is implementation and comes later
• But several factors affect high-level design as well

9/24/24 CSCI2340 - Lecture 8 29

Concurrency: Multiple Processes

• Independent processes that communicate
• Might run and read the result
• Might be message send and response

• This is the easiest to design and code
• Each process is self contained
• Limited interaction => limited chance for concurrency problems
• But not non-zero (all the problems still exist)

• Well-defined interactions
• cpp, asm and the C compiler, Code Bubbles, weka in hump, sort

9/24/24 CSCI2340 - Lecture 8 30

Concurrency: Background Tasks
• Use threads to support long-term work

• Don’t access the result until it is ready (futures)
• Threads are independent
• Use futures if they are available and work well in the language
• Use thread pools to handle disparate work within a system; not separate threads
• Examples: eclipse indexing; bubbles syntax fixing, search, …

• Use threads to support long-term I/O
• Sockets:

• Thread to monitor server socket
• Thread to monitor each client socket

• Other I/O (COSE search, crawler)
• Most of this is in the implementation, not the design
• Non-threaded models (e.g., JavaScript, Dart)

• Hide the threads & pools with asynchronous calls & futures
• But they are still there

9/24/24 CSCI2340 - Lecture 8 31

Concurrency: User Interface
• Swing/AWT thread handles all the UI issues (implementation)

• Same for most UI packages
• Most of a user-centric program is reactive

• User interface callbacks invoked in UI thread
• But your callback code then will delay the UI thread
• Don’t want to do anything complex in response to the user

• View non-trivial actions as background tasks
• Start up a new task for each action
• Actions should be independent
• Using thread pools or futures

• Actions affecting the UI
• Should be done in the UI thread
• Need to forward the actions to that thread

9/24/24 CSCI2340 - Lecture 8 32

Concurrency: Algorithmic

• Concurrent Algorithms & Data Structures
• When a particular task is expensive
• And the algorithm can be made concurrent

• Split a task into separate threads
• Run those concurrently
• Generally, need synchronization and sharing

• Think of this as implementation, not design
• For design: if the task requires significant sharing

• Think of it as one thread or process
• Data structures provided by standard libraries

9/24/24 CSCI2340 - Lecture 8 33

Concurrency in High-Level Design
• Start with a synchronous design
• Easier to reason about, design at a high level

• Identify opportunities & needs for concurrency
• What level of concurrency is appropriate
• Concentrate first on separating processes

• Other decisions are really implementation details

• Identify shared data structures
• These complicate concurrency coding
• Much easier to code if known in advance than to retrofit
• Identify interfaces/classes that might be shared

• Document these as thread safe or not thread safe
• Isolate these in their own component
• Identify other commonalities: database relations, etc.

9/24/24 CSCI2340 - Lecture 8 34

Programming Homework
• Consider how you would modify your program to:

• Rather that having properties on the screen determined either randomly or by user input, tie them to process properties.
• On Linux you can look at /proc
• On mac or Linux you can run ps and parse the input
• On windows you can run tasklist

• Examples of what can be done:
• Ball size relates to log(memory size); Ball speed relates to CPU usage; Ball color relates to # files
• Update every 1-10 seconds, adding/removing balls as needed

• Issues
• Number of balls (400-900 processes); asynchronous running of ps

• Consider also how to modify your program so that:
• It runs in a circular window rather than a rectangular one

• Consider also how to modify your program to use multiple threads
• Compute each ball’s next position separately

• Write and submit a description of what would be changed for these cases
• Don’t do the changes – just describe what you would have to do to your current application
• How modular was your original design
• How much could you reuse

• Due Thursday (canvas hand-in)

9/19/24 CSCI2340 - Lecture 8 35

PROJECT Homework
• Work on the high-level design
• Choose appropriate target language(s) (based on criteria in lecture)
• Think about interfaces in those languages

• Initial high-level design due Tuesday 10/8
• Something that can be reviewed

• Can be just a set of components
• Hand in through canvas (one per team)
• Not a final design

• Next Tuesday 10/8 we’ll have initial project presentations
• Describe what you are building
• Describe the high-level design
• 10 minutes (7 + 3 for questions)

9/19/24 CSCI2340 - Lecture 8 36

Research in High-Level Design

• Creating high-level designs using LLMs or code search

9/24/24 CSCI2340 - Lecture 7 37

