
Detailed Design
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

10/10/24 CSCI2340 - Lecture 11 1

Comments on Presentations
• Projects seem to have well organized project teams
• Projects seem to have a plan for proceeding toward the implementation
• Projects provided a nice overview of what they intend to do

• Enjoyable presentations
• Real specifications and requirements

• Several projects seem overly ambitious for a semester course
• This is good – planning for the future
• However, you need to be realistic about the course

• Have a good definition of what you expect to get done this semester
• You want to use LLMs

• Don’t really understand what the inputs/outputs are going to be
• Prompt engineering and output interpretation

• Integrating with VS Code or other IDE might be future plans

• Need to really understand what you are building
• UI generation – react is for interactive pages; how to specify and define interaction
• Accessibility -- both while creating (intro to talk) and after the fact (based on a URL)
• Speech -- what edits are allowed and how are these supported

10/10/24 CSCI2340 - Lecture 11 2

Comments on Presentations
• General Problem: deciding on technologies to use before understanding the design

• This commits the design rather than vice versa
• Choice of language

• Untyped (Python; JavaScript vs TypeScript)
• Choice of database

• This is an implementation decision, not a design decision (e.g., songs might be better stored in NoSQL)
• Possibly specify what needs to be stored, not the schema

• Definition of database schema is implementation – that is not part of the interface between components
• Shouldn’t need to be known by all members of the team

• Choice of framework
• This is generally an implementation decision, not a design decision
• Front-end shouldn’t care what is responding to their RESTful requests

• Need actual users to provide feedback on specifications, UI, …
• Some projects did this nicely
• Others planned to – these are needed before as well as after design

10/10/24 CSCI2340 - Lecture 11 3

Comments on Presentations
• Need to identify and account for risks

• No project listed the risks, but they are there (e.g., LLM usage)
• Need to define the interfaces

• No one talked about the component interfaces, the set of RESTful messages, etc.
• This is what should be defined in terms of high-level design, not implementation details

• Document as you write, not afterwards
• Need to think about how app could be self-supporting

• How could you monetize it to support AWS, maintenance

• Remember that the goal of the project in the course
• Is to learn how to write large, long-lived software
• Not just to get something working this semester

• Project Meeting at the end of class
• I’ll be available for questions

10/10/24 CSCI2340 - Lecture 11 4

User Interface Homework

•What approach did you take to graphic note bubbles
• Do you think your solution will work
• How to minimize the interface
• What ideas did you have

10/10/24 CSCI2340 - Lecture 11 5

High-Level Design

• Breaks the system into components
• Each component to be coded by individual (or a small team)
• Each component has well-defined interfaces
• Note that these may change

• Next step is to design the components
• And choose appropriate technologies
• Then build the implementation

• You should have some experience at this level
• From CS32, CS134 or equivalent
• I want to highlight what I think you should have learned

10/10/24 CSCI2340 - Lecture 11 6

Object-Oriented Design

• Object-oriented design fits most applications
• Objects provide information hiding
• Objects are a natural way of representing things
• Objects can be singletons or sets of items

• Objects are supported by most languages
• Modules in some languages represent singleton objects
• But mixing modules and objects can get confusing

• Objects are flexible
• Naturally represent many aspects of programming
• Not just physical entities

10/10/24 CSCI2340 - Lecture 11 7

Detailed Design
• For a single high-level design component

• Repeating high level design at a more detailed level
• Designing classes (modules, files)

• Determine the set of top-level classes needed
• What are the methods/functions and fields/local variables of those classes
• Determine how these classes are organized (inheritance)

• Designing methods
• What do the methods do
• High-level specification (not code)

• Signature (data types, return value, exceptions)
• Statement as to what the method does (JavaDoc? Pseudo code?)

• Don’t be afraid of exceptions
• Designing private methods and fields comes later

• Part of implementation, not design

10/10/24 CSCI2340 - Lecture 11 8

Goals of Detailed Design
• Compact, coherent implementation
• Before you commit to code

• Changes, new features, etc. are contained in a single class
• Top-level classes aren’t too big or too small
• Inner or support classes should be small
• File sizes are reasonable

• Number of files & classes is reasonable
• Methods have reasonable (small) number of parameters
• The interfaces between classes are SIMPLE
• Simpler means easy to code, maintain, evolve

• You should feel comfortable coding it from specification

10/10/24 CSCI2340 - Lecture 11 9

What do Classes Represent
• Objects (physical or virtual) in the solution

• Data with operations
• Anthropomorphic
• Example: switches, sensors,

• Algorithms (functional classes)
• Example: safety controller (switches, signals)

• Reactive Elements (callback classes)
• Function pointers, completions
• Sets of these

• Control (Thread/Runnable)
• Controllers

• Phases of a run
• Data types (e.g., lists and maps)

• Complex combinations of these

10/10/24 CSCI2340 - Lecture 11 10

Choosing a Set of Classes

• You should have done this in the top-level design
• Set of interfaces or façades for the design
• Here the components are packages/modules
• If very complex, use multiple or nested
• Additional packages developed for supporting or common code

• You need to do it again for each package or module
• Start with classes representing the top-level design components
• Façades – probably on one class for this package
• Interfaces – a public class for each interface this package implements

• Then add whatever is needed to support these

10/10/24 CSCI2340 - Lecture 11 11

Choosing Classes

• Goal: set of coherent classes
• Start with the set of all possible classes
• Organize this
• Cluster classes that are similar (e.g., hierarchies)
• Find representatives of clusters (or create)
• Find dominant classes (this controls or owns that)
• Find redundant classes
• Find common functionality
• Can use UML again, interfaces, paper, …

• Choose a subset of these
• That cover the original set
• That is “good” : what does this mean?

10/10/24 CSCI2340 - Lecture 11 12

Coupling and Cohesion

• Coupling
• How much one class needs to understand or use another
• Generally, communication should be 1-way, not 2-way
• Avoid implementation dependencies
• Want to minimize coupling

• Cohesion
• How unitarian (sole-purpose) one class is
• Should be able to describe a class with a simple phrase
• Want to maximize cohesion

10/10/24 CSCI2340 - Lecture 11 13

Law of Demeter
• Principle of least knowledge
• A unit should have limited knowledge of others
• Only units “closely” related to the current unit
• These are the unit’s friends
• Should only have a small circle of friends

• Each unit should only talk to its friends, not to strangers
• Only talk to immediate friends
• Very limited communication to things outside the package/module
• Limited communication to other classes even in the package

• Principle of least privilege
• Restrict and annotate who can access what

10/10/24 CSCI2340 - Lecture 11 14

Principle of Least Privilege
• Fields should always be private

• Except for constants defined in an interface
• Possibly protected for use in subclasses, but this is discouraged

• You need to look at the superclass when fixing the subclass
• Implementations should depend on another class’s fields – they are low-level details

• Methods should only be public where necessary
• Implementing an interface, part of a façade – defined in high level design

• Methods should only be package-protected where necessary
• When needed by other classes of the package
• But the package-protected set of methods for a class should be small (its local interface)

• Methods should only be protected where necessary
• When needed by subclasses, no-one else (don’t use as package-protected too)

• Methods should be private by default
• Inner classes should be private

• And static where possible

• Pure constants (strings, numbers) should be avoided in code
• These tend to change, and you need to find them and keep them consistent
• Strings might change with internationalization

10/10/24 CSCI2340 - Lecture 11 15

Design Patterns
• Early on we noted design is the application of patterns
• We talked about architectural patterns

• And noted that patterns exists at all levels
• It is your job as a software engineer to know lots of patterns
• That is what makes a good designer

• What is an object-oriented design pattern
• Set of classes and methods to serve a particular purpose

• Description of a design pattern
• Purpose
• When it should be used
• When it should not be used
• The actual classes and methods
• Alternative implementations

10/10/24 CSCI2340 - Lecture 11 16

Design Patterns

• Are useful
• Handle common situations in a standard way
• Provide a common vocabulary for understanding design
• Provide a starting point for doing design

• Can be overused
• Or underused

• Gang of four (GoF) book
• 20 some common patterns (sequential)
• You should know these by name

• Some are more common than others
• Your design vocabulary

10/10/24 CSCI2340 - Lecture 11 17

Categories of Design Patterns

• Factory patterns
• Builder, Abstract Factory, Flyweight, Singleton, Factory Method,

Prototype
• Delegating responsibility patterns
• Adaptor, Bridge, Decorator, Façade, Proxy

• Control patterns
• Composite, Interpreter, Command, Iterator, Strategy, Template,

Visitor
• Algorithmic patterns
• Mediator, Memento, Observer

10/10/24 CSCI2340 - Lecture 11 18

Inheritance
• What object-orientation is all about
• Not really, sort of a side issue

• OO is about abstraction and information hiding
• Inheritance offers OOP lots of functionality

• Forms of inheritance
• Interface inheritance
• Class inheritance
• Multiple inheritance
• Prototype inheritance (Self, early JavaScript)
• Mix-ins

• Uses of inheritance
• The different functionalities they provide

10/10/24 CSCI2340 - Lecture 11 19

Natural Inheritance
• Representing a hierarchy of object types

• Obvious example (animal/mammal/rodent/…)
• Not that frequently used

• Most natural hierarchies are shallow
• AST nodes, symbol types, device types

• Intermediate classes should be abstract
• Used to group lower-level classes, not used as objects
• Used to define or specify particular functionalities

• All external references should be to the root class
• Or abstract classes (internally)
• Don’t not want to expose the implementation or hierarchy

• Because it is going to change and is an implementation detail
• Others shouldn’t be dependent on it

• Generally, don’t want to expose intermediate classes
• Generally, don’t want to expose leaf classes either

10/10/24 CSCI2340 - Lecture 11 20

Inheritance for Shared Functionality
• Providing shared functionality
• Common methods go into super class

• Which should be abstract
• Without a public constructor
• Only used to represent any of its implementors

• Subclasses are directly visible
• Can be created, etc.

• Example: CATRE saved objects, BudaBubble
• Provide Additional functionality
• Mix-Ins are designed for this

• Multiple inheritance can provide this
• Java: interfaces with default methods

• How these work can be confusing and messy
• Conflicting names, DAG-like inheritance

10/10/24 CSCI2340 - Lecture 11 21

Other Uses of Inheritance

• Providing common definitions
• Constants interface
• Fields defining global constants
• Enumerations
• Can also define inner interfaces and classes

• Implementing this provides access to names, not functionality
• Providing annotations
• Indicate a class has certain properties
• Serializable, Cloneable
• Code Bubbles: Zoomable

10/10/24 CSCI2340 - Lecture 11 22

Other Uses of Inheritance
• Modifying the behavior of a class

• Inheriting from a Swing class
• Set properties in the constructor
• Modifying the paint method

• Providing alternative implementations
• Interface or abstract class as the root
• Subclasses implement the actual algorithm
• Jcomp (compiler)

• Internal implementation to read byte codes using ASM
• Jcode implementation that tracks all the information in a project

• Interface inheritance
• Supporting high-level design interfaces
• Defining abstract functionality
• Requires factory classes or static methods to create the actual objects
• This is the only safe instance of multiple inheritance

• Assuming there are no default methods
• ActionHandler, Runable, CatreSavable

10/10/24 CSCI2340 - Lecture 11 23

Other Uses of Inheritance
• Defining callbacks
• Server defines a callback interface

• Use default methods to allow simple use (if > 1)
• Or provide an implementation class with empty callbacks that can be inherited from

• Client defines an implementation of the callback
• Registers it with the server

• Server invokes the callback when an event occurs
• Akin to callback functions, but more general
• MouseListener, ActionListener, …

• Behavior inheritance
• Defining the default behavior (Thread, AbstractAction)
• Adding behaviors to a class or interface (JcompExtendedFile)
• Identifying the availability of a behavior (Scalable in Bubbles)

10/10/24 CSCI2340 - Lecture 11 24

Inner (Nested) Classes
• Any class used only by a single class should be a private inner class if possible

• When allowed by the language (Java)
• Or a private class defined inside a module (JavaScript, Dart)
• Can also use private class defined in the same file (C++)
• Unless it is too complex (> k lines, m methods, one page) – then it becomes its own outer class

• A local hierarchy can be implemented as inner classes
• Outer class is the root of the hierarchy
• Internal classes are private Inner classes and not exposed directly
• Inner classes are static (why?)
• Example: JcompSymbol => various types of symbols

• Inner classes should always be private (& static if possible)
• Inner classes are implementation details
• Never refer to inner classes of another class

• Exception: Inner interfaces of a top-level interface are okay
• Don’t export inner classes

• Inner classes will often evolve to outer classes
• When they get to large or complex

10/10/24 CSCI2340 - Lecture 11 25

Immutable Objects
• Objects that are never changed once created

• String in Java; Java Records
• Immutable objects might change internally

• But the changes are not visible to anyone
• And the changes are thread safe (or duplicable)
• String in Java computes and stores its hash code the first time it is needed

• These are much simpler to reason about
• And generally safe for concurrency

• Can be tricky to code
• Should be final, everything done in the constructor, no internal fields for computations, …

• Can be more difficult to code with
• Less efficient (lots of new objects)
• Need to remember to use correctly (String.replace(…))
• Must be careful to keep it immutable as the implementation evolves

• Document immutability and concurrency

10/10/24 CSCI2340 - Lecture 11 26

Unique Immutable Objects
• If you create many instances of an object

• And they are essentially the same
• Create only one instance of that object

• Have a factory method that checks if object exists
• That calls a private constructor if it doesn’t
• Returns original if so
• Returns a new instance if not
• String.intern()

• Generally, implies object is considered immutable
• This has advantages

• Saves memory
• Can use == rather than .equals (fast comparison, hashing, …)

• Disadvantages
• Need to define fast lookup
• Factory method must be synchronized in a multithreaded environment
• Can be tricky to code and use: must be immutable

10/10/24 CSCI2340 - Lecture 11 27

PROJECT Status
• Make sure you know what you are building
• Should have ideas for your user interface (10/15)
• Should have broken project into components

• Separate the various components
• High-level design: façades and interfaces
• Components assigned to individuals (or small teams)

• Should have interfaces for the components (part due)
• Ensure components are separated for implementation

• For example, in Java, use different packages
• In other languages, use different directories

• Individuals should start developing a set of top-level classes for each package
• Or modules or components or files (depending on language)

• We will have project status reports in a few weeks

10/10/24 CSCI2340 - Lecture 11 28

Further Reading

• https://w3sdesign.com/GoF_Design_Patterns_Reference010
0.pdf

10/10/24 CSCI2340 - Lecture 11 29

https://w3sdesign.com/GoF_Design_Patterns_Reference0100.pdf
https://w3sdesign.com/GoF_Design_Patterns_Reference0100.pdf

Project Meeting Time

10/10/24 CSCI2340 - Lecture 11 30

