ID LIKE TO START ITS A BUNCH OF
WITH A DIAGRAM. SHAPES CONNECTED
= | BY LIN

A COPY OF YOUR
PRESENTATION?

CSCI2340: Sc

NOW T WILL
SAY SOME

| IMPRESSIVE

SYNCHRONIZED
INCREMENTAL DIGITAL
INTEGRATED DYNAMIC
E-COMMERCE SPACE.

THE RESULTS OF MY
EXPERIMENT ARE
DISTURBING.

THE LIFE OF A SOFTWARE MUCH LATER...

ENGINEER .

OH MY. I’'VE
CLEAN) SLATE. SoLiD DONE iT AGAIN),
FOUNDATIONS. THIS TiME : HWAVEN'T T 7
T will BUILD THINGS THE
RIGHT wAY.

“Some of these ideas ... they sound like they ...
have been pulled out of a hat.”

Comments on Presentations

* Projects seem to have well organized project teams
* Projects seem to have a plan for proceeding toward the implemen

* Projects provided a nice overview of what they intend to da
* Enjoyable presentations
* Real specifications and requirements

» Several projects seem overly ambitious for a
* This is good — planning for the future
* However, you need to be realistic abo
* Have a good definition of what
* You want to use LLMs
* Don’t really understan
* Prompt engineeri
* Integrating with

Need to res

"OK, now that we all agree, let’s all go back to
our desks and discuss why this won't work.”

How to give constructive
feedback on presentations

Be specific about what could make a

presentation better. Include feedback on:

Audience Material

Comments on Presentations 2

Youmight not have Using more real-world

examples in your
needed parts of the xampies in you

presentation will help

ion for thi
uu; C;,, f:;;":" your audience better
7 Z understand the subject
nmore about the
audience and their base matter and show
them the stakes of what

level of knowledge. . ’
yourre presenting.

Visuals

* General Problem: deciding on technologies to use before understandin
* This commits the design rather than vice versa

Body language

rd

S [4

. When you're presenting to Including all the written
. C h O I C e Of I a n g u a ge agroup of people, information you did on
try tomake eye contact your slides will be great for
N . with some of them. It will people looking at it later;
. show them you're talking but for people in the
* Untyped (Python; JavaScript vs TypeScript)
you come across more have been as effective as

confidently. including more visuals.

* Choice of database

* This is an implementation decision, not a design decisio
* Possibly specify what needs to be stored, not the s

* Definition of database schema is implementation
* Shouldn’t need to be known by all members

* Choice of framework

* This is generally an implementati
* Front-end shouldn’t care w

* Need actual users to pr
e Some projects di
e Others plan

Comments on Presentations

* Need to identify and account for risks
* No project listed the risks, but they are there (e.g., LLM usage)

* Need to define the interfaces
* No one talked about the component interfaces, the set of
* This is what should be defined in terms of high-level desi

* Document as you write, not afterwards

* Need to think about how app could be sel
* How could you monetize it to suppor

Key elements to nail when
evaluating a presentation

Crystal clear message Killer structure
& organization

sure the point hits Keep it tight and logical

« Remember that the goal of
* |sto learn how to write ok
* Not just to get sor o

Use visuals that dazzle and

ssssssss

Project

’

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

User Interface Homework

* What approach did you take to graphic note b
* Do you think your solution will work
* How to minimize the interface
* What ideas did you have

High-Level Design

* Breaks the system into components
* Each component to be coded by indivic

* Each component has well-definec
* Note that these may change HLDD

 Next step is to design eI 2 B i

* And choose appror
* Then build the

Object Autonomy? OOP

Object-Oriented Design

* Object-oriented design fits most application

* Objects provide information hiding
* Objects are a natural way of representir
* Objects can be singletons or sets c

* Objects are supported by
* Modules in some lang
e But mixing module

* Objects are
* Nature

Detailed Design

For a single high-level design component
* Repeating high level design at a more detailed level

Designing classes (modules, files)
* Determine the set of top-level classes neec
* What are the methods/functions and
* Determine how these classes are

Designing methods
* What do the method
* High-level specific

Detailed
Design

Goals of Detailed Design

 Compact, coherent implementation
e Before you commit to code

e Changes, new features, etc. are containe
* Top-level classes aren’t too big or tc

* Inner or support classes should
* File sizes are reasonable

e Number of files & cla
* Methods have re

 The interfac
* Si

What do Classes Represent

Objects (physical or virtual) in the solution
e Data with operations
* Anthropomorphic
* Example: switches, sensors,

Algorithms (functional classes)
* Example: safety controller (switches, signals)

Reactive Elements (callback classes)
* Function pointers, completions
e Sets of these

Control (Thread/Runnable

Controllers
* Phases of a rur

Class: Person

Name[firstName, lastName]
Age

Gender

Interests

Bio{ "[Name] is [Age] years old. They like [Interests]" }
Greeting{ "Hi! I'm [Name]". }

nnnnnnnnn

Choosing a Set of Classes p- L

[

* You should have done this in the top-level design | wﬁﬂéﬁ
* Set of interfaces or facades for the design :

* Here the components are packages/modules
* If very complex, use multiple or nested
» Additional packages developed for supporti

* You need to do it again for each

e Start with classes representi
* Facades — probably on o
* Interfaces — a public

* Then add what

10/10/24

¥

b BT

S

Choosing Classes

* Goal: set of coherent classes
 Start with the set of all possible classes

* Organize this
 Cluster classes that are similar (e.g., hierarchies)
* Find representatives of clusters (or create)
* Find dominant classes (this controls or owns tk
* Find redundant classes
e Find common functionality
e Can use UML again, interfaces, p

 Choose a subset of these

* That cover the origina
* Thatis “good” :

10/10/24

Coupling and Cohesion e

* Coupling
* How much one class needs to understand or use ano
* Generally, communication should be 1-way, no
* Avoid implementation dependencies
e Want to minimize coupling

* Cohesion

* How unitarian (sole-pur
* Should be able to
* Want to maximi

10/10/24

Law of Demeter

* Principle of least knowledge

* A unit should have limited knowledge of other

* Only units “closely” related to the current uni
* These are the unit’s friends
* Should only have a small circle of frien

* Each unit should only talk to it

* Only talk to immediate frien
* Very limited communi
* Limited communi

* Principle of lezc
* Restrict

) - K

Only talk to your immediate friends

Principle of Least Privilege

Fields should always be private
* Except for constants defined in an interface

* Possibly protected for use in subclasses, but this is discouraged
* You need to look at the superclass when fixing the subclass

* Implementations should depend on another class’s fields — they are low-level details Applications

Methods should only be public where necessary
* Implementing an interface, part of a facade — defined in high level design

Methods should only be package-protected where necessary
* When needed by other classes of the package
* But the package-protected set of methods for a class sho

Methods should only be protected where necessa
* When needed by subclasses, no-one else (do

Methods should be private by default

Inner classes should be private
* And static where possible

Pure constants (string

Design Patterns

* Early on we noted design is the application of patterns

We talked about architectural patterns
* And noted that patterns exists at all levels
* Itis your job as a software engineer to know lots of patterns

* That is what makes a good designer
 What is an object-oriented design pattern

* Set of classes and methods to serve a particular purpose v' mv. ' _.si. ’f(@'
* Description of a design pattern
* Purpose
* When it should be used V= I
* When it should not be used /ﬁ)\ B “
* The actual classes and methods ~ ol “\@*
. ive i i DY R \/ \\\ Sy
Alternative implementations %g 9%{% o
W €L REROIR e

Design Patterns

e Are useful

* Handle common situations in a standarc
* Provide a common vocabulary for
* Provide a starting point for doir

e Can be overused
* Or underused

* Gang of four (
* 20 some cc

Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

IV

SIM-NOSIOC

NOISSI40¥d AT

Foreword by Grady Booch

aaaaaaaaaaaaaaaa tructural ehavioral
. Adap . Chai
2. Builder | | 2. Bri idge | 2. Command
Composi Inte
= Deco 4. Iterator
° ° 5. Singleton 5. Fagade 5. Mediator
6. Flyweight | 6. Memento
7. Proxy 7. Observer
8. State
9. Strategy
10. Template Method
11. Visitor

* Factory patterns

 Builder, Abstract Factory, Flyweight, Singleto
Prototype

* Delegating responsibility pattern
e Adaptor, Bridge, Decorator, F

* Control patterns
* Composite, Interpr
Visitor
* Algorithmi
* Medi

Inheritance

* What object-orientation is all about

* Not really, sort of a side issue
e OO is about abstraction and information hiding

* Inheritance offers OOP lots of functionality

* Forms of inheritance
* Interface inheritance
e Class inheritance
* Multiple inheritance
* Prototype inheritance (Se
* Mix-ins

e Uses of inherite
* The differer

10/10/24

" INHERITANCE

-- -

BASE COMPOSITE

1

Natural Inheritance

EXTENDS

DERIVED COMPONENT

Representing a hierarchy of object types
* Obvious example (animal/mammal/rodent/...) Real tvon
* Not that frequently used ’

Most natural hierarchies are shallow
* AST nodes, symbol types, device types

Intermediate classes should be abstract
e Used to group lower-level classes, not used a
* Used to define or specify particular functi

All external references should be t
* Or abstract classes (internall

* Don’t not want to expos
* Because itis goin

Inheritance for Shared Functione

Class Vehicle

* Providing shared functionality

« Common methods go into super class
* Which should be abstract
* Without a public constructor
* Only used to represent any of its ir
* Subclasses are directly visik
* Can be created, etc.

* Example: CATRE sz
* Provide Additior

fuelAmount()

capacity()
applyBrakes()

l

| Class Car I

| Class Bus I |Class Truck I

Mixin 1

+function1()

* Mix-Ins ar (Hewobiea) +unction2()
° M +Hunction1() l
+function2() -
+functionABC() Mixin 2
+functionABC()

edu;‘eka!

Constants Iin Java

Other Uses of Inheritance

* Providing common definitions

e Constants interface
 Fields defining global constants
* Enumerations
* Can also define inner interfaces and classe

* Implementing this provides access

* Providing annotations
* Indicate a class has certai

e Serializable, Cloneak
e Code Bubbles:

10/10/24

Circle

-radius

Other U f Inherit
e r S e S O n e r I a n C e :Ei;::g;;':;) . Circle’s getArea() returns the area of the circle.

+getArea() Circle’s toString() returns "Circle[...]"

5uperclas
. ! . SubcLass

* Modifying the behavior of a class Cylinder
* Inheriting from a Swing class -height

* Set properties in the constructor +Cylinder() Cylinder overrides the inherited methods:

« Modifying the paint method 122:335228 e Cylinder’s toString() returns "Cylinder...]"
+getArea() Cylinder’s getArea() returns the surface area of

* Providing alternative implementation +taString() the cylinder.
* Interface or abstract class as the roc

* Subclasses implement the ac

* Jcomp (compiler)

* Jcode imple

* |nterface inhe

Interface Interface
extends implemems

implements

extends ex1ends

Java Callback)
Function

publicinterface

Other Uses of Inheritance

* Defining callbacks

» Server defines a callback interface

* Use default methods to allow simple use (if > 1)

* Or provide an implementation class with empty callbacks th
 Client defines an implementation of the callbac

» Registers it with the server

* Server invokes the callback when an even

* Akin to callback functions, but more g
* Mouselistener, ActionListener,

e Behavior inheritance
* Defining the default be
* Adding behavior
* |dentifying

10/10/24

Inner (Nested) Classes

* Any class used only by a single class should be a private
* When allowed by the language (Java)

* Or a private class defined inside a module (JavaScri

* Can also use private class defined in the same

* Unless it is too complex (> k lines, m

e Alocal hierarchy can be imple
* Quter class is the root of the

* Internal classes are pri
Inner classes are s
Example: Jco

Nested classes
Inner classes Static
Nested classes

Method local Anonymous
Inner classes Inner classes

Immutable Objects

Objects that are never changed once created
e String in Java; Java Records

Immutable objects might change internally
e But the changes are not visible to anyone
* And the changes are thread safe (or c
e String in Java computes and stores

These are much simpler to re
* And generally safe for c

Can be tricky to cod
e Should be fi

Don't allow
subclassesto ©
override methods.

to the constructor must be 0
assigned to a field create a
defensive copy of it

Don't add any
setter method

TOP 5
Creating
an ., Declare all fields

final and private
Immutable
Object

If a field is a mutable
object create defensive
copies of it for getter
methods

o

Unique Immutable Objects

If you create many instances of an object

* And they are essentially the same
* Create only one instance of that object

Have a factory method that checks if object e
That calls a private constructor if it doesn’
Returns original if so
Returns a new instance if not
String.intern()

Generally, implies obje
This has advantz

Create Own Immutable
Class in Java

i 1Ea:)
Characteristic of mutable class
» The class must be declared as final. JA \ / A

» Data members in the class must be declared as privatf/

ob
pimlmik 2t
» Data members in the class must be declared as final. /
—_——

»/A parameterized constructor should initialize all the fields performing(a deep copy a
et
T »iL) EMC’ e

\»Deep Copy of objects should be performed in the getter methods
e — S —,

[|
Microsoft

PROJECT Status

Make sure you know what you are building
Should have ideas for your user interface (10/15)

Should have broken project into components
e Separate the various components
* High-level design: facades and interfaces
* Components assigned to individuals (or small teams)

Should have interfaces for the components (part

Ensure components are separated for imple
* For example, in Java, use different pac
* In other languages, use different di

Individuals should start devel
* Or modules or compon

We will have projec

10/10/24

Further Reading

e https://w3sdesign.com/GoF Design Patter
0.pdf

https://w3sdesign.com/GoF_Design_Patterns_Reference0100.pdf
https://w3sdesign.com/GoF_Design_Patterns_Reference0100.pdf

Project Meeting Time

