SITUATION:

There is a
problem.

Let's use

multithreading.

0O

YEAH!
)

SITUATION

rheTe
are

97
prms.oble

LET'S TALK ABOUT THE
GULP BUILD TooL. A LOT
OF YoU JAVASCRIPTERS
ARE DISCOVERING THAT IT
IS A LOT MORE EFFICIENT
TO PASS DATA FROM TASK
To TASK, RATHER THAN
WRITING TO DISK
BETWEEN

EACH STER

OR, AKKA ACTORS IN SCALA.
CONCURRENCY SURE IS SIMPLER
WITH NON-SHARED MEMORY
AND IMMUTABLE MESSAGES,
HUH?

OK, WITH
THAT,
LETS BEGIN.

EEEE—

Processes & Pipes:
they've been in
Unix for like

40 goddamn years

p&=

YESTERDAY THIS
WEIRD EXCEPTION CAME

I FINALLY FOLIND WHAT
CAUSED IT

DETERMINISM

Using Concurrency

* Today’s CPUs have multiple cores

* Can easily run multiple things at once
* You want your program to take advar

* Doing things in parallel should s
 Handle more users, larger d

* Modern environmen

* User interfaces ar
* |/O on slow @

Basic Concepts: Threads

 Threads are schedulable entities that execute code
* Flow of control
* Basic way of doing concurrent operations

* Contain:

» Stack (local variables)
* Registers (temporary variable

* Locks that are held
* Thread-specific da

e Can be built intc

registers
“A

o— thread

single-threaded process multithreaded process

Basic Concepts: Locks

Mutual Exclusion of Critical Section

Running critica
section X
reques'thuircd

* Locks provide synchronization between threads
* Ensure that a thread has exclusive use of a resource
* Access to a shared variable, file, socket, processor

* Different types of locks

* Mutex, semaphore, monitors, read/write, fc

* Locks on a file; files as a lock

* Waiting for message replies

* Java synchronized regions are
* Wait/notify allows for ¢

* Database transactior

* Hardware loc

released

released

acquired

Running critica
section X O0GICBIGCOM

Thread 2

e Concurrent
[] W

Loc

Concurrency and Design

* Techniques discussed earlier

* Separate processes /
 Within a component performance - scalability

concurrency parallelism

* Identify potential backs proxy reverse proxy
* |dentify what car
* |dentify pote

* User inter

* Datc

Separate Processes

* Relatively easy to implement
* Should provide simple concurrenc

* Need to handle communicsz
* Sharing via messages (F ot of i s
 Sharing via run/exi
* Sharing via da

e Still need
* Mess

Threads and Parallel (Bac

<<Java Class>>
(® AsynchronousService

ecAsynchronouSService(BlodMQQueuRRunnablp)

Thread Pools

* Reuse threads for multiple tasks
* Pool of threads that handle queued tasks
e Can vary and control the number of thr
e Can control the queue (e.g., priorit
* Pool can expand and contra

» Better approach than indi
* But slightly more cc
* Might need to ¢
e Can beali

* Img

Executor Service
Task Thread

Pool

===

Submitters

m\ Task Queue
=

=

* Bu

Problems with Concurrency

* Concurrency makes programming considerably more

* Synchronization problems: Race Conditions
* A needs output from B, but doesn’t wait for i
* A and B both want to update a variable
* A shouldn’t proceed until all Bs are c

* Locking problems
* Deadlocks: A waits for B, E
* Cycles of locks in gen
* Might go beyonc

* Performance
* YouO©

Concurrency Patterns

* Design is all about patterns

 Standard ways of implementing things

 Patterns for handling concurrency
* To avoid race conditions
* To avoid deadlocks
* To get the maximum perfor

* You should be aware
e And use them a

10/11/24

Concurrent
Patterns and
Best Practices

UITenCy UesIgn raueros ana

1ALCU QUAlLy

Auriou

7
&

Concurrency Design Patterns

Quality Attributes

VS,

Configurability
Flexibility

Interoperability

Modifiability/Maintainability | &

Modularity

Portability

Reliability / Robustness

(Race Conditions)

Reliability / Robustness
(Deadlock)

Reliability / Robustness

(Others)

Simplicity

Standards Compliance

Sustainability

Usability

Structural

Double Buffering

¢ | Performance / Efficiency

Lock Object

Producer-Consumer

Read/Write Lock

Scheduler

Thread-safe Decorator

Behavioral

Active Object

Balking

Event-based Asynchronous

Future

Guarded Suspension

Monitor Object

Reactor

Thread-Specific Storage

Asynchronous Processing

Half-Sync/Half-Async

Leader/Followers

AJAX

Static Locking Order

Thread Pool

Double-Checked Locking

Scoped Locking

Single Threaded Execution

Strategized Locking

Two-Phase Termination

Race Conditions

 Two threads, A and B, both write t
 What will another thread see

e Will it be the value of A c
* Or something differe

* More typical rz

RACE CONDITION EXAMPLE

Race Conditions

TG ’ Read X Q
U o o
20 :

X=X+10! 20 X=X+10 B
3

' Read X |

q-y3uisd

* Counter Program

* void count() { ++shared_counter; }
e Called from multiple threads

* 4 threads each calling count 100,000

 What will the resultant value be
* Will it be exactly 400,000,0007?

* Can it be over 400,000,0
 Can it be under 40

* Make a guess

10/2/24

Experiment

* Tried the counter program as above

* Also tried:
* Making the count method synchronized
e Using an atomic integer rather than
* Having each thread maintain its
* Making the shared count
* Having only one of t

 What results d

10/11/24

Counter Program Results

Simple Counter 112,836,399 2.57 (4.25) 0.14 (0.245) 0.16 (0.191)
Synchronized method 400,000,000 19.62 (53.71) 23.06 (80.535) 28.24 (90.31)
Atomic Integer 400,000,000 8.06 (7.22) 3.28 (11.956) 8.36 (32.06)
Separate counter per 400,000,000 11.16 (10.96) 2.68 (6.608) 4.08 (8.751)
thread

Simple Counter, volatile 186,035,542 52.80 (14.16) 3.41 (13.449) 9.91 (38.13)

Single Threaded 0.07 (0.073) 0.15 (0.141)

400,000,000

Volatile Variables

e What does volatile mean

REVE]
Bytecode

JIT Compiler

Special instructions to the processor which
don't allow processor level reordering or
field-storing in local cache

+ happens-before relation
+ data-race-free code

Java Memory Model

CPU/Processor

Different level of
cache presents
visiblity/reordering
problems accross
different cores.

COGICBIGCOM

RAM (main memory)

data race Idata race

// Shared variable Thread 1 Thread 2
count = 0

func incremen tCount () { Lockiih) Locic(l)

= " if count == 0 { count=1 count=2
ace On I IonS count ++ unlock (1)
}

* Show up as random results

 Different results from different runs (with sa
* Unexpected results
* Accessing null pointers or undefined

* Are often difficult to find and
* Debugging these can take

* Need to avoid these
* These arise fro
* |dentify wh

Design Patterns for Shared Dz

* Synchronized data structures i
* Concurrent data structure

* Synchronized acce

* Use immutak

Synchronized Data Structures & . . =

* Some Java classes automatically synchronize al
* Every method is synchronized
* Hashtable, Vector, StringBuffer
* Synchronized collections [Collectic

* These don’t always work

e Common case: add nev

* Synchronized rec
* Or synchror

Concurrent Collection Methods

add, addAll, clear, contains,
containsAll, isEmpty, remove,

removelf, removeAll, retainAll, size,

1toArray, stream, parallelStream

terator
+[Iterable
avalang
c X
I
addFirst
ueue getFirst,
a peel
] ~po
ingQueue eque |/~ rel
il t ava.uti removeL.

offer, po RS
t r e
getWaitingConsumerCount, »7}Transfernueue" Foc%lngﬂeque'b
hasWaitingConsumer, tryTransfer, transfer |. = =~ L ! = LELLAN ing: putFirst, putLast,
V| takeFirst, takeLast,
verloaded with time out params:
offerFirst, offerLast, pollFirst, pollLast

LOGICBIGCON

Concurrent Data Structures

* Java provides atomic primitives

* Java provides explicitly concurren
* ConcurrentHashMap, Concu

* No guarantee on simul

* May or may not see iy et e
e Simultaneou

* Encouragec

P —

javnuil.mmo&.mmmm (CHM)

Synchronized Access to Data Structure

* Use synchronized (collection) { ... } for all accesses
* Other than initialization
* Multiple operations can be combined
* More general than synchronized data structures
* Might need to use it for reads as well as writes
* Will need to use for iterations ArrayList Collections.synchronizedList)
HashSet Collections.synchronizedSet()

N Caveats HashMap Collections.synchronizedMap()

* All updates to a data structure shc
* Generally, return a read-only cop

» Updates should be localizec
* Be careful of creating
* Easy to miss one ¢

How To Synchronize?

10/11/24

O o

-

public final class String

implements java.io.Serializable, Comparable<String>, CharSequence {
/** The value is used for character storage. */

private final char value[];

. .
6 /** Cache the hash code for the string */
m m l | l e J e (f private int hash; // Default to @

/** use serialVersionUID from JDK 1.0.2 for interoperability */

private static final long serialVersionUID = -6849794470754667710L;

J**

* Class String is special cased within the Serialization Stream Protocol.
*

* p

A String instance is written into an ObjectOutputStream according to

*
. I t b I O b t 27 * Object Serialization Specification, Section 6.2, "Stream Elements’
r r l r r | s */
u a e J e C S private static final ObjectStreamField[] serialPersistentFields =
L
* Created once, never modi
V4

O o0

®

new ObjectStreamField[@];

wWw NN

TS

JE*

* Initializes a newly created {@code String} object so that it represents
* an empty character sequence. Note that use of this constructor is

* unnecessary since Strings are immutable.

2:/'

* These are inherentl D e

}

* Might want ur

Minimize Shared Writable Data

Provider Provider

* Read-only data is easily shared -

e Constructors don’t need synchronizatio

CCCCCCCC

CCCCCCCC

CCCCCCCC

* Or when you don’t worry about upc e
 Ball position for example

* |[dentify what needs to b
* Now and possibl

* If you don’t kr
* Assun

ConcurrentModificationExcer

e Another form of race condition
e But it can happen even without t

* Looping over a structure

 foreach loops
* Even non-loops

= Patterns to ¢ ConcurrentModificationException in Java

Single-threaded

Constructors %
environment
2]

| . "‘."4,-:, ~ 2 {
" Multi-threaded

g Using of loop
environment

.é Example

Resource1

Deadlocks

* Threads waiting on each other

* No thread can make any progress
 Thread A locks X, tries to lock Y
 Thread B locks Y, tries to lock X

* Can be arbitrary cycles (more than 2 lo
* Can involve different types of lock
* Can involve system locks as w
* Can involve waiting for m
* Can involve waiting f

e Evolution and Mai
* Tends to a

Deadlock
Avoidance

R1

Patterns to Avoid Deadlocks

* Locks should be as local as possible

e Use synchronized statements rather than methods
* Avoid calling other routines from within a locked r

* Especially routines that might lock something else
* Include locking in documentation for met
* Avoid executing long-running or non-

* Avoid waiting indefinitely for a

* These are effectively locks
* Also avoid waiting on

* Avoid having lots
* This can cau
e Can be di

10/11/24

More Patterns to Avoid Deadlo

Use synchronized statements rather than methods
* To minimize the code that is synchronized

Use java.util.concurrent locks

* More control (e.g., read-write locks, semaph

* More difficult to code with (use try...fi

* Avoids bad code inside a monitor Case 1 ca

se 2
thread-1 thread-2 thread-1 thread-2
. ' . : . : :
° it (4 £ (i deposit(int val){ deposit(int val){
This doesn’t avoid deadlocks dposis(ine val){ aeposistins val){ ositlint vl depositlint val){
. . . tmp = tmp + val; tmp = tmp + val; int tmp = bal; int tmp = bal;
Split locked regions into bal = tmp; bal = tap; U S Al e = mp vl

} } synchronized(o) { synchronized (o) {

* Synchronized che s v, i
} }

*'"', LASEE eV agiodbbel !!II'I! m

Performance Problems

20 Independent Sample Runs

* Synchronization can be expensi e

e Counter program with & wi
 Cost of locking even v
 Cost of volatile

* YOU hever ge
* Ca

ng-1x4core Intel
mg-2x6core Inte
rng-1x8core Intel
bulldo

rng benchmark

b

Method calls on
installed listeners

Calls to listeners
Y:}. ©)

User Interface Threads @ L

 The user interface runs in its own thread

e Can access all widgets, definitions, etc.
* These are effectively shared

* All changes to the Ul should k
 After initialization
* Creating new windc
e Updating tree
e Thisisw
e Updati

OU

1. Read task from queue

2. Read block of data
(from DB or cache)

User Interface Thread

2. Handle Event

3. If necessal ry, generate
tasks o refresh view

User interface callbacks are in Ul thread
e User interface invokes user routine in that thread
* Anything done in the callback blocks the Ul

All non-trivial Ul actions should be runnable
* Done in a separate thread (with a thread
* Using SwingUtilities.invokelater to

The complexity of callbacks wil
* What is simple now mig

JavaScript, Dart
* All futures, asyr

Input / Output Concurrency

* |/O is slow with respect to comput
* Don’t want to slow program dov

* Threads provide a conveni
* |/O often needs to v
* Threads provic

Sockets and Threads

e Server Socket Thread

* Implemented as a thread that opens se
* Loops forever doing accepts
* Creates new client thread for e Server

ss=new ServerSocket(port)
e =
Y (: I t S k t I h d socket s=ss.accept()
I e n O C e re a s.getInputStream()
InputStream s.getInputStream()

* Given socket for clien cupusren: N oo

s.getOutputStream OutputStream
new clientHandler(port,dis,dos s.getOutputStream()

Client

s=new Socket(host,port)

Client Handler

port
inputStream
OutputStream Response

/O Threads for Other Uses

* Connecting to external server Pultple Connecions Pers stent onnece
* HTTP connection
e Stdin, stdout, stderr from the
* Separate thread that re
e Separate thread wi

* Large dISk 1/Q

Threaded |/O Alternatives

* Use non-blocking I/O operations
e C/C++ use interrupts or exceptions o
e Java: (java.nio) implemented usir

* These can be a bit more
* And to get proper o

* Non-threadeo
* Providin

10 VS NIO

10 (blocking)

NIO (non-blocking)

Implicit Concurrency)
: (singl thread) P

‘ Database ‘

 JavaScript, Dart, and other languages
e async - await, futures

* Concurrency for external actions
* |/O and external actions done in background (HTTP requests, Database requests
* Libraries provided to do complex actions in background
e Either as language extensions or as plug-ins
* Running your own server programs
* Assumption made that these are where your program is spendir
* This is true for most web servers, web pages mobile apps

e But your code in JavaScript or Dart is still single-thre:

* One event loop that runs one thing at a time
* Need to move intense computations to a seg
* Or do low-level coding to handle these in
* Dart has isolates, but these can be
* Good for handling separate use

: 9 — j'(omputation‘
”’ager(ul\bnt\‘ 7 :

CSCI2340 - Lecture 12

Request 1
. Request 2

Implicit Concurrency Problems

~_ First request made,
last to return

Request 3

Request 4

Request 5

Last request made,
.~ third to return

500

* There can still be concurrency problems (but not

e Race conditions with database operations (use tr
* Handling failed transactions
e Race conditions on read — await — com

* Deadlocks with external processes

* Handling failed messages
* Ensuring external failures

* Performance
* Don’t want to

Documentation for Con

* Document each class or i ot

I t bl implements Accessible
)
m m u a e JPanel is a genericlightweight container. For examples and task-oriented

documentation forJPanel, see How to Use Panels, asectionin The Java
* Thread-safe iy

P ~ Warning: Swing is not thread safe. For more information see Swing's
N Ot t h re Threading Policy.

Warning: Serialized objects of this class will not be compatible with future
Swing releases. The current serialization support is appropriate for short
term storage or RMI between applications running the same version of
Swing. As of 1.4, support for long term storage of all JavaBeans™ has been
added to the java.beans package. Please see ¥XMLEncoder.

HOMEWORK

* |ts time to recode your programming assignment
* It turns out that compiling on my new Linux machine takes < 10 seconds

* \Various alternatives:
* Use your bouncing balls for data visualization
* Show information about all processes or your processes as you thought about earlier
* Show information about weather in 100+ cities (specify in a file)
* Show information about 100+ stocks (specify in a file)
* Show information about some other time-changing values
* If your program has a goal the user should achieve
* Then create an Al agent that tries to achieve the same goal
e Al agent should run independently from the ball computations
* If your program does complex computations (e.g., collisio
* Then code the program to do these in separate threads
* And experiment to see how many threads provide
* Provide graphs and discussion of how the n

* Also consider updating the program
* Recode your assignment to use
* Runin an elliptical or poly

* Due 10/24 (can get it

PROJECT HOMEWORK

* Continue detailed design of your project piece

* You should have a sense of the top-level classe
e Of your component

* Hand in individual top-level desig
* Should have time for a proj

10/2/24

