
Creating and Using 
APIs

CSCI2340: Software Engineering of Large Systems
Steven P. Reiss

10/2/24 CSCI2340 - Lecture 13 1



What is an API
• Application Program Interface
• Front end to a library or equivalent
• Set of top-level calls
• With OOP: Set of public classes and methods
• With Modules: Set of (importable) functions and classes
• With the web: Set of messages or HTTP requests

• The API is also the documentation on how to use these
• Designed to be shared
• By multiple portions of the same application (different developers)
• My multiple applications

• Designed to be reused 
• APIs are a clean way of achieving reuse

10/2/24 CSCI2340 - Lecture 13 2



Using an API
• This is easier than creating one
• And existing APIs will give you ideas for designing your own

• Lots of external (open source) code exists
• Risks and benefits covered previously
• Considerations

• How well it fits your needs
• Does it fit with your implementation

• How easy is it to understand
• Is it being maintained
• IP, security, performance, …

10/8/24 CSCI2340 - Lecture 13 3



Example: External APIs used in Bubbles
• Eclipse JDT and support for abstract syntax trees 

• To use the JDT in our plugin we needed 36 jar files
• Marytts for text to speech (was freetts)
• Apache commons compression 
• Gnujpdf for generating pdfs from screen images
• Joscar, Smack for chat services
• Jsoup for html scraping (documentation access)
• Json
• Jsyntaxpane for editing various forms of text files
• Jtar for reading tar files
• Junit for testing
• Websocket (node.js debugger interface)
• Commonmark for markup parsing (programmer’s notebook)

10/8/24 CSCI2340 - Lecture 13 4



Creating an API
• You should create an API for your future development

• Common code you will use over and over
• Within a project, within a company, for an individual

• Alternative to copy & paste 
• This create code clones which can be problematic
• Provides reuse

• You should do this for your project
• Common code across multiple developers

• You should do this for your own coding
• Common code for single developer

• You need to understand the programming language and your needs
• But this is not as easy as it seems

• This lecture goes over some of the complications

10/9/24 CSCI2340 - Lecture 13 5



Experience with Creating APIs -- IVY
• Ivy has evolved over 40+ years 
• Started as BWE in the early 1980s (mostly for UI)
• Evolved from C to handle C++, Java
• Thinking about a Dart equivalent once we understand how it is used

• Almost everything developed in IVY has changed
• Some changes are easy – additional calls & packages
• Other changes are more difficult

• Moving away from jikesbt to asm
• Handling prefixes in XML
• Handling templated versions of Swing classes

• More has been retired than has been maintained
• Or will be when the one piece of software still needing it dies
• Pieces basically no longer work (CINDER, JFLOW) – compilation only

10/8/24 CSCI2340 - Lecture 13 6



Experience with APIs -- IVY
• Several pieces are only used by one application

• Weren’t useful for more than one (PEBBLE FSA editor)
• Too specialized or too complex (JFLOW -> FAIT (outside IVY))
• JANNOT – annotation processor
• Probably remove these from API (but consider current & future uses)

• Other pieces are widely used and seem correct
• MINT for message passing (and MINCE for C/C++)
• SWING: a set of classes to simplify the use of Java Swing
• FILE: a set of file and formatting utilities
• XML: a set of XML input, output, and manipulation utilities
• EXEC: process running and query methods
• JCOMP: fast internal Java compiler
• PETAL: embeddable, extensible structured graphics editor
• STDLIB: C++ extensions and standardization (.H files)
• JCODE – byte code interface using ASM

10/8/24 CSCI2340 - Lecture 13 7



Experience with APIs -- IVY

• Other pieces have seen limited use (but > 1)
• LIMBO – tracking lines between versions
• LEASH – interface to Cocker code search

• Other pieces have become outdated
• CINDER -- jikesbt byte code manipulation

• Other pieces are under development
• BOWER – Express-like embeddable web server for Java

10/8/24 CSCI2340 - Lecture 13 8



Interfaces Types Used in IVY

• Sets of static methods
• FILE, XML

• Extensions to existing classes
• IvyXmlWriter, SwingGridPanel, SwingNumericField, …

• Public class or façade 
• IvyExec

• Sets of related classes (façade with interfaces)
• MINT (control, message, handler)
• JCOMP (type, symbol, scope, …)

10/8/24 CSCI2340 - Lecture 13 9



Single Jar Packaging

• IVY is packaged as a single jar file
• Which requires several other libraries 
• These can be included in the jar (ivyall.jar)
• These can be picked up from the IVY’s lib directory

• Single jar packaging is good for individual use
• Essentially provides an extended common code base

• Not ideal for outside users

10/17/24 CSCI2340 - Lecture 13 10



Single Package Packaging

• Outside users probably don’t want all of IVY
• Want to use a single package (e.g., MSG, JCOMP, or PETAL)

• Packaging IVY as a set of jars would make sense here
• Users could pick and choose just what they want

• Pros and Cons
• Saves memory
• Avoids naming and library conflicts
• However, these packages depend on other parts of IVY

10/17/24 CSCI2340 - Lecture 13 11



APIs are Difficult to Design and Build
• What you need to know to build your own API / library

• Because you should be thinking of and doing this
• Need to anticipate future uses

• But no one knows what these are or will be
• Try to be general

• Generalize from the special case of your application
• This can make things easier (or more difficult)
• But keep it simple

• Need to be easy to use 
• Easy to learn, especially if for others
• Few dependencies (internal or external)
• No large commitment
• Easy to incorporate into another project

10/2/24 CSCI2340 - Lecture 13 12



APIs are Difficult to Design and Build
• Error handling is important
• Don’t want to be blamed for others' problems

• Programmers trust their own code more than yours
• The API is a black box

• Don’t you wont want to debug it if you are working on other things
• Needs to be standalone
• Shouldn’t depend on too many (any?) outside libraries

• Version inconsistencies
• Incompatibility with other libraries used in an application
• Libraries you depend upon will change and evolve

• Should avoid language dependence (e.g., which version of Java or C++)
• Packageable in one or two files (.jar, .so + .H, npm module)

10/2/24 CSCI2340 - Lecture 13 13



APIs are Difficult to Design and Build
• Need to be (well) documented
• Javadoc (or equivalent) describing each public function and field

• Expected inputs, exceptions
• Non-trivial

• Usage examples (php manual)
• Need to be well tested
• Test suite just for the API
• Keep adding to this as bugs are found

• Performance can become an issue
• Might not be in your application
• But will be in the next one

10/2/24 CSCI2340 - Lecture 13 14



High Level Interfaces are a Form Of API

• Designed to be used by other parts of the application
•Much of what went into the design of an interface
• Is the same as the design of an API
• Anticipate potential uses
• Anticipate future needs

• Except uses of a generic API are not well known
• You have thought out your application
• Don’t really know any others
• Need 3-5 different applications to get the API almost right

10/2/24 CSCI2340 - Lecture 13 15



API Development
• Identify potentially shared code
• Start with the simplest API you need first

• What you would write for the first application
• Routines that might be useful in other circumstances
• If you have 2 or more initial applications, this is easier
• Multiple people can be thought of as multiple applications

• Generalize where possible
• Use templated classes rather than fixed components

• Don’t use Object or dynamic if you can avoid it
• Use templated methods to allow generic arguments
• Leave room for expansion and evolution

• Probably more than you normally would
• Extend standard interfaces where appropriate
• But keep the interface simple

10/2/24 CSCI2340 - Lecture 13 16



API Development
• Each time you have a new application
• Refactor the API to accommodate it

• Add a few new calls or classes
• Add new methods with additional parameters
• Remove or merge unneeded methods
• Maintain upward compatibility 

• If major restructuring is needed
• Decide if it will help both applications (probably will)
• Preserve the original API as well (mark as deprecated)
• Don’t be afraid to refactor early on and as needed

• After enough (5) uses
• You’re probably close to having the right API
• Publish it

10/2/24 CSCI2340 - Lecture 13 17



API Coding Principles
• Handle errors

• Well defined behavior on bad or invalid inputs
• Either in terms of unique output or exceptions

• Code defensively: error check all inputs explicitly
• Check for null, 0, empty collections, …
• Explicitly document what is returned on bad inputs

• Don’t be afraid to throw exceptions
• Either standard exceptions or one defined explicitly for the library
• Understand Exception versus Error

• Document as you go
• Javadoc or other standard form
• Include input assumptions
• Include output under different circumstances
• Include exceptions

10/2/24 CSCI2340 - Lecture 13 18



API Coding Principles
• Collections are more useful than arrays in Java

• Dynamic, easier to create, easier to add to, more flexible
• Use enums for options, not integer or object constants

• These are type-checked
• Define these as part of the library

• Use interfaces if multiple implementations are possible
• Or if you want to hide the implementation
• With an appropriate static factory method
• Use reflection here if needed to choose the implementation

• Define callback interfaces for events
• Use EventListenerList 
• Add methods to add and remove callsbacks
• Provide a default listener implementation class (or default methods on interface)

10/2/24 CSCI2340 - Lecture 13 19



API Coding Principles
• Generalize
• Use Collection, not List, Set, or Vector
• Use CharSequence not String
• Use Comparators rather than implicit comparison 

• But provide a method to use implicit comparison
• Algorithm classes where appropriate

• But provide a method to use the standard algorithm
• Use templated classes and methods
• Understand templated classes
• Learn how to define a templated method
• Avoid using Object if it isn’t multiple types at once
• Define interfaces as needed to represent input data

10/2/24 CSCI2340 - Lecture 13 20



API Coding Principles

• Minimize the size: keep it simple
• Number of public classes, interfaces, methods, fields
• But providing functionality
• Ensure it is easy to use

• Provide debugging hooks
• toString, output methods, logging?
• Informative error messages or exceptions with messages

• Avoid using outside libraries that might be used separately
• To avoid version conflicts
• To make it easier to include in your application

10/2/24 CSCI2340 - Lecture 13 21



API Coding Principles

• Implementing structures or hierarchies in an API
• Provide an abstract top-level class for common functionality
• Only expose the subclasses if necessary
• Defining a set of interfaces is often more appropriate

• Provide iteration for use in the language if appropriate
• Provide navigation (up, down, children, …)

• Define a visitor for each external data structure
• So that users don’t have to understand explicit navigation
• Even if it isn’t a tree 
• Signature visitor, UML visitor

10/2/24 CSCI2340 - Lecture 13 22



Library Management
• Need to manage the set of APIs an application needs
• To avoid duplication
• To avoid version conflicts
• To easily include all the needed libraries in the binary

• I’ve been doing this manually
• Maintaining a lib directory with the explicit requirements
• Maintaining the classpath, librarypath, or command script

• Tools have been developed for this
• These are commonly used today
• These depend on the language
• And its compilation and sharing models

10/17/24 CSCI2340 - Lecture 13 23



Library Management Tool Goals

• Each API specifies its dependencies 
• Which other APIs it uses
• Including minimum, maximum version numbers

• Application specifies its dependencies
• Tool finds the proper version to meet all the dependencies
• Versions are automatically downloaded
• Versions are automatically included when running the binary
• Tool can build a complete binary (with dependencies)
• Tool can build a directory with all the libraries

10/17/24 CSCI2340 - Lecture 13 24



Library Management Tools
• Maven (MVN)

• For compiled languages (Java, C/C+, …)
• XML file (pom.xml) defining the dependencies
• Global repository of libraries and their dependencies
• Maven also handles building, packaging, testing, …
• Can fail if conflicting dependencies

• Node Package Manager (NPM)
• For Node, JavaScript, TypeScript
• Uses json file (package.json) to define the dependencies
• Allows multiple versions of a library (since language does)

• Dart/Flutter use YAML (pubspec.yaml)
• To do maven-like analysis
• And provide other capabilities ala maven

• You probably should be using one of these for your project

10/17/24 CSCI2340 - Lecture 13 25



Other Types of APIs

• Just as there are multiple ways of representing interfaces
• There are multiple API possibilities

• HTTP-based APIs
• SOAP-based protocols
• RESTful (AJAX-based) protocols
• Google location service

• Microservices
•Message-based APIs
• FIELD and Code Bubbles use several of these

10/2/24 CSCI2340 - Lecture 13 26



Programming Homework

•Modified programming assignment due 10/24 
• Use the balls for data visualization
• Provide an AI for your bouncing balls game
• Experiment and report on using multiple threads

• Create a video of the assignment once it works
• Can have sound (not mandatory)
• Prepare to hand in (due 10/29)
• Prepare to show in class Tuesday 10/29

10/2/24 CSCI2340 - Lecture 13 27



Project Meeting

•Meet again as a project group
• Think about whether you need an API to support your team
• Code that each person would need to write separately
• Identify any such portions and list their requirements

• Then have a project meeting 

10/2/24 CSCI2340 - Lecture 13 28


