it's the intern, he didn't know how
to develop an AP, so he was manuolly

HOW TO CREATE A STABLE API

D WHATS T answering AP colls all day and all It was never going to last. One
Map<object, Ghyect> ££0° night. One day he just snapped... auy answering every AP call...
FOR?

HE‘Y;,EV;HAT

SERVICE -~ ou

hCcEss [l vavaiLasie INRIZRNOIN boINGz
REACHED

ARRRRGH!/ : ’ == Trat mokes

sense. | thought }
that service was
pretty slow...

I'd have oraanised some
If it were me redundancy, maube with 3 intems,
| would have done to moke sure tnere wos some
it differently... rotation and a fallback...

V5 | pTe)

o/

CommitStrip.com

YOUR
FRIENDS?
REALLY?

A LOT OF
GOOD FRIENDS
HELPED US.

APl make to occess\

data

What is an AP

* Application Program Interface

* Front end to a library or equivalent
» Set of top-level calls
* With OOP: Set of public classes and methods
* With Modules: Set of (importable) functions and clz
* With the web: Set of messages or HTTP reques

e The API is also the documentation on hov
* Designed to be shared

What is an APl and How it wroks?

* By multiple portions of the sa
My multiple applications

* Designed to be reusec
 APIs are a clean v

10/2/24

Using an AP|

* This is easier than creating o
* And existing APIs will give

* Lots of external (op
e Risks and ben
e Conside

Example: External APls used in Bubbles

* Eclipse JDT and support for abstract syntax trees
* To use the JDT in our plugin we needed 36 jar files

* Marytts for text to speech (was freetts)
* Apache commons compression

* Gnujpdf for generating pdfs from screen images
* Joscar, Smack for chat services

* Jsoup for html scraping (documentation access
* Json

 Jsyntaxpane for editing various forms gy,
* Jtar for reading tar files =
* Junit for testing

* Websocket (node.j
e Commonma

Resource [Line edy bies.bdduBAdTThreadView
2

s

| comments | Types | Fields

|

10/8/24

Creating an AP|

You should create an API for your future develog How To Build An API?
e« Common code you will use over and over
e Within a project, within a company, for

Alternative to copy & paste
* This create code clones which
* Provides reuse

You should do this for
* Common code

You should

Experience with Creating APIs -- [VY

* lvy has evolved over 40+ years
 Started as BWE in the early 1980s (mostly for Ul)
* Evolved from C to handle C++, Java
* Thinking about a Dart equivalent once we understand how it is used

* Almost everything developed in IVY has changed

* Some changes are easy — additional calls & packages
e Other changes are more difficult
* Moving away from jikesbt to asm
* Handling prefixes in XML
> Handling templated versions of Swing classes A1 SHFOARE AR LS A Ske Akt L2 3
* More has been retired than has been mai
* Or will be when the one piece of sof
* Pieces basically no longer work

CSCI2340 - Lecture 13

Experience with APIs -- [VY _ IVY

INTERFACE

Suit No. 6 & 8, 4th Floor, Ginza Centre
Jinnah Avenue Blue Area, Islamabad
Tel: +92-51-2277350, 2877321, Fax: 2876548

e Several pieces are only used by one application
* Weren’t useful for more than one (PEBBLE FSA editor)
* Too specialized or too complex (JFELOW -> FAIT (outside 1VY))

* JANNOT — annotation processor
* Probably remove these from API (but consider curren

* Other pieces are widely used and seem corre
MINT for message passing (and MINCE fo
SWING: a set of classes to simplify the
FILE: a set of file and formatting
XML: a set of XML input, o
EXEC: process running
JCOMP: fast intern
PETAL: embed
STDLIB:

JCODE

Experience with APIs -- [VY

* Other pieces have seen limited use (but > 1)
* LIMBO — tracking lines between versions
* LEASH — interface to Cocker code search

* Other pieces have become outc PR
* CINDER -- jikesbt byte code

* Other pieces are unde
* BOWER — Expre

Interfaces Types Used in VY

e Sets of static methods
* FILE, XML

e Extensions to existing classes
* lvyXmIWriter, SwingGridPanel, SwingNur

* Public class or facade
* [vyExec

 Sets of related classes
 MINT (control,
* JCOMP (type

10/8/24

Single Jar Packaging

* IVY is packaged as a single jar file
* Which requires several other libraries
* These can be included in the jar (i
* These can be picked up from

* Single jar packaging |
* Essentially provic
* Not ideal fc

End-to-End
Application

Single Package Packagin
Process

* Qutside users probably don’t want all of IVY
* Want to use a single package (e.g., MSG, JCC

* Packaging IVY as a set of jars woulc
e Users could pick and choose j

* Pros and Cons
* Saves memory
e Avoids namin
* Howeve

APIs are Difficult to Design and Build

* What you need to know to build your own API / library
* Because you should be thinking of and doing this

* Need to anticipate future uses
e But no one knows what these are or will be

* Try to be general
* Generalize from the special case of your 3
* This can make things easier (or more c
* But keep it simple

* Need to be easy to use
e Easy to learn, especia
* Few dependencies

APIs are Difficult to Design and Build

A'A

507ABAD GATE
* Error handling is important YI/A\ ,
* Don’t want to be blamed for others' problems LSRN

* Programmers trust their own code more than yours

* The API is a black box

* Don’t you wont want to debug it if you are working o

 Needs to be standalone

e Shouldn’t depend on too many (any?

* Version inconsistencies
* Incompatibility with other librari
* Libraries you depend upo

* Should avoid language
* Packageable in or

BEST PRACTICES FOR

APl ERROR HANDLING
NOI

10/2/24

APIs are Difficult to Design and Build

* Need to be (well) documented

 Javadoc (or equivalent) describing each public functio
* Expected inputs, exceptions
* Non-trivial
e Usage examples (php manual)
* Need to be well tested

 Test suite just for the API
* Keep adding to this as bugs ¢

e Performance can becormnr
* Might not be in yo
e But will be in

10/2/24

High Level Interfaces are a Form O

* Designed to be used by other parts of the

* Much of what went into the desig
* Is the same as the design of an AF
* Anticipate potential uses
* Anticipate future neec

* Except uses of
* You have t

> AP|

&
API Development =1 Development

* |dentify potentially shared code

e Start with the simplest APl you need first
* What you would write for the first application
* Routines that might be useful in other circumstances
* If you have 2 or more initial applications, this is e
* Multiple people can be thought of as multip

* Generalize where possible
* Use templated classes rather tha
* Don’t use Object or dynamici
Use templated methods
Leave room for exp
* Probably mor
Extend sta

Insight

API Development i

AP| Developer

e Each time you have a new application

* Refactor the APl to accommodate it
* Add a few new calls or classes
* Add new methods with additional parameters
 Remove or merge unneeded methods
* Maintain upward compatibility

* |f major restructuring is needed
* Decide if it will help both appli
* Preserve the original API c
* Don’t be afraid to refa

e After enough (5)

AP| Coding Principles

* Handle errors

* Well defined behavior on bad or invalid inputs
e Either in terms of unique output or exceptions

* Code defensively: error check all inputs expli
* Check for null, 0, empty collections, ...

AP| Coding Principles

What is

* Collections are more useful than arrays in Java
* Dynamic, easier to create, easier to add to, more flexible

* Use enums for options, not integer or object constants
* These are type-checked
* Define these as part of the library

* Use interfaces if multiple implementation
e Orif you want to hide the implementati
» With an appropriate static factor
* Use reflection here if needed

Define callback interfac

e Use EventListenerLi
e Add methods
* Provide a

10/2/24

AP| Coding Principles

. :
Generalize , , THE THREE PRINCIPLES OF
e Use Collection, not List, Set, or Vector EXCELLENT API DESIGN

* Use CharSequence not String

e Use Comparators rather than implicit compari
* But provide a method to use implicit compari

e Algorithm classes where appropriate
e But provide a method to use the star

* Use templated classes and rr
* Understand templated
* Learn how to define
* Avoid using Obje
* Define interf

10/2/24

APl Coding Principles

Decisions

Core API Design
Considerations

* Minimize the size: keep it simple
* Number of public classes, interfaces, meth
e But providing functionality
* Ensure it is easy to use

* Provide debugging hook
* toString, output mett
* Informative errc

e Avoid using

AP| Coding Principles

* Implementing structures or hierarchies in an API
* Provide an abstract top-level class for common f

* Only expose the subclasses if necessary
» Defining a set of interfaces is often more

* Provide iteration for use in the la
* Provide navigation (up, dow

e Define a visitor for eac
e So that users don’
e Evenifitisn’

10/2/24

Library Management

* Need to manage the set of APls an application needs

* To avoid duplication
 To avoid version conflicts

* To easily include all the needed libraries in the

* I've been doing this manually
* Maintaining a lib directory with the
* Maintaining the classpath, lib

* Tools have been develope
* These are commonl
* These depend or
* And its comr

10/17/24

Library Management Tool Goals

* Each API specifies its dependencies

* Which other APIs it uses
* Including minimum, maximum versic

* Application specifies its deper
* Tool finds the proper ve

* \Versions are automn

* \Versions are

Easier Build Process

8)

Uniform Build System Quality Project
Information

Library Management Tools

Maven (MVN)

* For compiled languages (Java, C/C+, ...) cisene) O Newresres
XML file (pom.xml) defining the dependencies
Global repository of libraries and their depende
Maven also handles building, packaging,
Can fail if conflicting dependencies

Node Package Manager (NPM)
* For Node, JavaScript, Typ
* Uses json file (package
e Allows multiple

@ Dart
Pubspec.yaml in Dart

O Full description of all Pubspec file fields
O What is semantic versioning

°
O
Q)
q
(e ol
S~
LA
c
(om
—
M
q
c

O caret syntax ¥ traditional syntax
O What is any keyword in version

o hosted package vs git
package vs path package

ooooo

Other Types of APls

e Just as there are multiple ways of representi
* There are multiple API possibilities

* HTTP-based APIs
* SOAP-based protocols
e RESTful (AJAX-based) protc

* Google location servic
* Microservices

Method

Create a new customer /customers

Delete an existing customer DELETE /customers/{id}

: l

Get a specific customer ET /customers/{id}

Search for customers /customers

Update an existing customer /customers/{id}

* Message-

Programming Homework

* Modified programming assignment due 10/24
e Use the balls for data visualization
* Provide an Al for your bouncing balls game
* Experiment and report on using multipl

* Create a video of the assignmen

e Can have sound (not manda
* Prepare to hand in (d
* Prepare to show i

10/2/24

Project Meeting

* Meet again as a project group
* Think about whether you need an API to sup

* Code that each person would need to write
* |dentify any such portions and list thei

* Then have a project meetin

