
Coding
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

10/9/24 CSCI2340 - Lecture 15 1



So You Think You Know How to Code
• You already know how to code
• Or you wouldn’t be here
• You’ve been coding for a while

• This course should teach you to code better
• Coding not for the moment
• Coding for large, long-lived systems
• Coding that will last

• I want you to use what you learned
• In your project
• In your programming assignment
• In your future work

10/16/24 CSCI2340 - Lecture 15 2



Coding is Important
• You will spend considerable time writing the code
• Or it will seem that way

• You will spend a lot more time reading that code
• Maybe not in this course, but in the real world
• Also reading code that others wrote
• For debugging, maintenance, evolution, understanding …

• This lecture tries to provide some general principles
• Beyond the naming and ordering conventions we previously covered

• And example rules or suggestions for coding in Java and JavaScript
• Other languages have similar rule sets
• Find them on-line, or invent them yourselves
• But make sure they are meaningful for you

10/9/24 CSCI2340 - Lecture 15 3



Basic Principles

•Write code to be read by humans
• Names should be meaningful
• Code shouldn’t be overly complex 
• Code should be documented where needed
• Code should be organized
• Finding things in the code should be easy

• Conventions should be followed
• Naming, ordering, style

• Code should be easy to understand
• Simpler is better

10/9/24 CSCI2340 - Lecture 15 4



Basic Principles

• Take pride in your code 
• You should want to show it off
• You should want others to read it
• You should want others to emulate it
• You should want others to use it

10/9/24 CSCI2340 - Lecture 15 5



Basic Principles

•Write code meant to be permanent
• Assume it will be around for 20 years
• Even if you anticipate doing so, you won’t throw it away

•Write code so it can be extended in the future
• Code rarely shrinks
• Classes will get additional methods/functions and fields
• Classes will be used in different ways
• Methods will get longer and more complex
• Fields and variables will be added

10/9/24 CSCI2340 - Lecture 15 6



Basic Principles

• Write code to be maintained
• Ease of debugging is more important than ease of writing

• Code defensively: it really helps
• Ability to find a location given class/method name

• This might be all you get from a stack trace or bug report
• Avoid constructs that are difficult to debug and test

• Ease of changing the code is more important than ease of writing
• Easy to add new items
• Easy to adapt, refactor
• Localize as much as possible (principle of least privilege)
• Minimize coupling, maximize cohesion
• Document as needed

10/9/24 CSCI2340 - Lecture 15 7



Making this Concrete: Classes
• Files and Classes should be reasonably sized
• Not too long or too short: think about reading it

• 200-1000 lines is best 

• Keep the number of top-level classes in a package reasonable
• Number of files in a directory
• 5-20 would be a good target: think about finding something
• Use inner classes, separate packages, or subpackages

• Inner classes should be small
• If it is > 100 lines (1 page/screen), should probably be an outer class

• Make inner classes static, non-extendible classes final
• Classes and files shouldn’t have too many public methods
• Interfaces should be kept simple

10/9/24 CSCI2340 - Lecture 15 8



Making this Concrete: Methods
• Methods / Functions should be reasonably sized
• Should fit on one page or screen
• If more complex, split into multiple methods or use helpers
• Or encapsulate in an inner class to provide common local variables

• Methods shouldn’t have too many parameters
• Especially accessible methods (public, protected, …)
• Parameters should be necessary and logical

• Parameter types should be primitive where possible
• Easier to understand, simpler to use

• Use a consistent parameter order throughout project
• (width, height)   versus  (height, width)

10/9/24 CSCI2340 - Lecture 15 9



Making this Concrete: Logging
• Use logging to track execution throughout coding
• You’ll eventually have to debug
• Have the system capable of explaining what is happening
• Logging finds bugs that you don’t otherwise see
• Add logging calls as you code as you write it

• Logging libraries exist
• Java has one built in
• Apache Commons Logging 
• Slf4j is another widely used one for Java
• Easy to write your own as well
• Be wary of bugs introduced in logging

10/9/24 CSCI2340 - Lecture 15 10



Making this Concrete: Defensive Coding
• Add defensive checks liberally as you write the code
• Fields should be private (prevent others from changing)

• Keeps change effects local
• Public methods shouldn’t trust their arguments

• Check that parameters have reasonable values
• Before using them

• Check output is reasonable and expected
• When testing, debugging, using the system
• After calling external methods
• Catch errors early
• Always look at log output 

• Make all assumptions explicit
• Either in the code or in comments
• Or both

10/9/24 CSCI2340 - Lecture 15 11



Making this Concrete: Conventions
• Use a consistent and complete set of conventions

• Standard conventions (e.g., Sun, Google)
• Quite extensive, but still don’t cover everything
• Might be overly restrictive for your purposes

• Use naming conventions to your advantage
• Class name should identify the package and where to find it
• Looking at an identifier, you should be able to find its definition
• Avoid the possibility of name conflicts (internal and external)

• Use file ordering conventions to your advantage
• Know where in a file to look for things (fields, private methods, …)
• Formatting should be consistent throughout the project
• Split files into sections with blocks

10/9/24 CSCI2340 - Lecture 15 12



Making this Concrete: Compilation

• Choose a reasonable set of compiler warnings
• IDE-based compilers make this easy
• Warnings are there for a reason – better code

• Ensure code compiles without any warnings
• You can use @SuppressWarnings if needed
• But you should justify its use

10/9/24 CSCI2340 - Lecture 15 13



Making this Concrete: Simplicity
• Keep the code simple
• Efficiency probably isn’t the primary concern
• Nor is conciseness or minimizing initial typing
• Target ease of reading, understanding & debugging

• Comment anything that might not be obvious
• To a programmer unfamiliar with the details
• To yourself 5 years hence

• Ensure code can be understood from the comments
• And the method and variable names
• Without having to read unnecessary details
• Be able to quickly find the relevant portion of a function or method

10/9/24 CSCI2340 - Lecture 15 14



Use a Style Checker
• For Java: use checkstyle
• Either start with Sun or Google standards

• Change these to meet your needs and conventions
• Or go through the various checks and set up or ignore each

• Justify your decision 
• Should have no checkstyle warnings when done

• Use @SuppressWarnings when needed and justified
• For other languages
• C/C++: lint (original style checker)
• Dart: language enforces some style conventions
• TypeScript/JavaScript: ESLint
• Checkers exist for most languages

10/15/24 CSCI2340 - Lecture 15 15



Making this Concrete: Language
• Every language has its quirks

• Some aspects are for ease of coding, not ease of reading
• Other aspects might be hard to understand 

• What happens at run time needs to be obvious to the reader
• Other aspects might make debugging difficult
• Other aspects might make evolution difficult

• I generally develop a set of rules for using a language
• That emphasizes readability, maintenance, debugging, evolution
• Features not to use in the language
• Features to use that might otherwise be overlooked
• Based on experience

• You can generally find language usage guidelines
• For most languages, either in books or on the web

10/9/24 CSCI2340 - Lecture 15 16



Java Guidelines: Inner classes
• Use inner classes
• Use inner classes to hide implementation details
• Inner classes should not be exposed directly
• Inner interfaces in a common interface might be exposed
• Can enclose an algorithm with its own set of global variables
• But can implement global interfaces

• Inner classes are likely to become outer classes
• Name and code accordingly

• Avoid nesting inner classes
• Inner classes should be static if possible
• Inner classes should be private

10/9/24 CSCI2340 - Lecture 15 17



Java Guidelines: Anonymous Classes

• Do not use anonymous or method-local classes
• Class outername$10 tells you nothing while debugging
• Finding the code is difficult

• Anonymous classes will often grow and become cumbersome
• Will need to become inner or outer classes eventually
• Why not make it an inner class initially
• This gives a reasonable name, file location
• Makes it easier to extend

• Understanding variable references is difficult
• Changing variables can have unintended effects

10/9/24 CSCI2340 - Lecture 15 18



Java Guidelines: Hierarchies

• Embed simple hierarchies as inner classes 
• Inside the exposed (abstract) (root) class of the hierarchy
• Assumes hierarchy itself is not exposed

• This is an implementation detail
• Inner classes must be static in this case

• Only expose a hierarchy if necessary
• Prefer interface-based hierarchies
• Allows hierarchy to evolve and change
• Only the root should be a visible external type

• Provide a visitor for hierarchical structures

10/9/24 CSCI2340 - Lecture 15 19



Java Guidelines: Imports

• Don’t use on-demand imports
• IDEs will add necessary imports, fix up import lists, etc.

• Use static imports only when names will be unambiguous
• With your code, external libraries, other imports, etc.

• Use imports to access inner components of an interface
• When those components are named appropriately
• To avoid name conflicts
• Otherwise use Outer.Inner notation

10/9/24 CSCI2340 - Lecture 15 20



Java Guidelines: Generics

• Get as strong typing as you can
• Use generics for all collections, etc.
• Don’t use Object 
• As a method parameter
• Unless you really mean an object with multiple simultaneous types

• Learn how to create your own generic classes
• Template rather than cast

• Learn how to create your own generic methods
• Where the output type and maybe input types depends on parameters
• But ensure these are easy to understand and use

10/9/24 CSCI2340 - Lecture 15 21



Java Guidelines: Lambdas

• Use lambdas sparingly if at all
• Never use untyped lambdas 
• Difficult to debug – where is lambda$5 in the code?
• Environment is unclear at run time
• Problems similar to anonymous classes (and more)

• Implicit typing can be complex and confusing
• Make sure it is all explicit
• Prevents future problems

• Be wary of method references
• Impossible to debug

10/9/24 CSCI2340 - Lecture 15 22



Annotations in Java -- Definitions

• Understand the use of annotations in the language
• Built-in Annotations (e.g., @Override, @SuppressWarnings)
• Checking annotations (e.g., @Nullable, @NonNull)
• User defined annotations

• Compile-time annotation Processing
• Augment or convert the code 
• But not in the way you would expect

• Dynamic annotation processing
• Effectively augment the code using reflection at run time
• Used by Spring and other frameworks
• This means what you read is not what you execute

10/9/24 CSCI2340 - Lecture 15 23



Java Guidelines: Annotations
• Use built-in annotations (@Overrides)
• Use checking annotations if available and enforced
• Otherwise, they can be misleading

• Don’t use an annotation processor or dynamic annotations
• Seem convenient, but more of a hinderance than a help in the long run
• Difficult to understand what is going on

• Unless you are intimately familiar with the annotation library
• And you won’t be in 5 years

• Dynamics have no source for debugging, extending
• Can violate principle of least privilege (@Getter)
• Don’t work well with static analysis tools
• Note these are part of the Spring & other frameworks

10/9/24 CSCI2340 - Lecture 15 24



Java Guidelines: Other

• Use enumerations rather than integer constants
• Avoid using records (implicitly make things public)
• Only this ‘this.’ where necessary 
• Initialize in the constructor
• Not in non-static field declarations
• Initialize all fields

• Don’t depend on default initializations
• Don’t get ”cute”
• if (x*y == 0) { }   versus   if (x == 0 || y == 0) { }

10/9/24 CSCI2340 - Lecture 15 25



JavaScript/TypeScript Guidelines
• Avoid nested function definitions
• Especially those > 1 line (a simple call)
• Preferred: use async/await 

• Code looks sequential, understandable
• Alternative: use futures

• But arguments are odd & not as clear to read
• Alternative: use separate functions

• Avoid lambdas (use named functions)
• Use separate routings with Express
• One for each component that handles URLs
• Rather than a master router with all  routing in it

• Google JavaScript style guide (overkill)

10/21/24 CSCI2340 - Lecture 15 26



Dart Guidelines

• Avoid nested function definitions
• Avoid lambdas
• Avoid complex nested widget definitions
• Define the components first, then the widget

• Separate the system into logical directories
• Treat directories as packages

10/22/24 CSCI2340 - Lecture 15 27



Code Reviews
• Looking at code off-line
• Have several uses

• Code style checking for project consistency
• As a debugging tool
• As a testing tool

• Take a piece of code (method, class, …)
• Have a panel of reviewers

• Can be individuals working separately or a group meeting
• Pass the code out to the panel (possibly in advance)
• Panel goes over the code line-by-line

• Goal is to find and eliminate all potential problems
• Make sure the code conforms to various guidelines
• Find potential bugs
• Ask about what-if questions to ensure al possibilities considered

10/16/24 CSCI2340 - Lecture 18 28



Code Reviews
• Look For
• Style violations
• Language usage violations
• How readable and understandable is the code

• Simulating the execution to see if it works
• Find possible inputs and conditions that might cause problems
• Ask what-if questions

• You can do code reviews on your own
• Read over your own code critically (like proofreading)

• This is a good idea in general
• Read it as you write; read it after it is written; read it as you type it

• Not as effective as having others do it

10/16/24 CSCI2340 - Lecture 18 29



EXERCISE
• Code base (handout)
• Go through the code and note what you think should be changed
• To make it follow conventions
• To make it more readable
• To make it the way you might code it
• To make it easier to maintain/evolve/debug/…
• To make it better (you can always improve your code)
• You should be able to find at least one thing to correct, possibly several

• Note what changes you would make
• And then we will go over them as a class

• We’ll do this again for debugging next time (different code)
• We’ll do this with your project code later on

10/9/24 CSCI2340 - Lecture 15 30



HOMEWORK
• Added feature due Thursday; Video of your program due next Tuesday
• Explicitly state coding standards for you project (as a team)

• Add this to your GitHub repo (coding styles should be there already)
• Ensure the code meets these standards
• Set up eslint, checkstyle or similar tool for your project

• Explicitly state the coding standards 
• For the language you use for your assignment
• Can be the same as above if the same language

• Make sure your programming assignment conforms 
• To these standards
• And meets the other coding criteria mentioned today
• Clean it up if not

• Optional
• Pair up and do a code review of your programming assignment

10/9/24 CSCI2340 - Lecture 15 31



PROJECT

• Ensure that each person can go off and code their portion of 
the system on their own.
• Project status reports in class next Tuesday (after or 

interspersed with program videos)
• Project meeting?

10/9/24 CSCI2340 - Lecture 15 32


