I finally finished that code ! | must
admit it is a masterful example of
recursion and elegance. Maybe
now I'll get some appreciation.

Here's a medal for
your exemplary
coding skills !

Hackles, you
are a genius

By Drake Emko & Jen Brodzik

Done yet 7 It's about time you
finished that stupid code !

Cepyright (£ 2001 Drske Emko & Jen Brodzik

ALMOST DONE!
ONLY ONE //TODO
LEFT IN THE CODE.

THE LAST TODO

I DON'T GET
YOUR CODE.
WHAT ARE
THESE LINES
FOR?

I HAVE NO IDEA.
BUT IT DOES NOT
WORK WITHOUT
THEM

So You Think You Know How to Code

* You already know how to code

* Or you wouldn’t be here
* You’'ve been coding for a while

* This course should teach you to code better
e Coding not for the moment
* Coding for large, long-lived systems DESIGNING _LARGE
e Coding that will last

* | want you to use what you learned
* In your project
* In your programming assignment
* |n your future work

Coding is Important

* You will spend considerable time writing the code
e Orit will seem that way

* You will spend a lot more time reading that code
* Maybe not in this course, but in the real world
* Also reading code that others wrote
* For debugging, maintenance, evolutio

* This lecture tries to provide som
* Beyond the naming and ord

* And example rules or s
* Other languages
* Find them on-li

&00D CODE 8AD CODE

' Tavtal @5\\ s

Basic Principles @ E EPE
e e

A = @

%3] I D

THE ONLY VALIDO MEASUREMENT OF CODE QUALITY: WTFS/MINUTE

A

* Write code to be read by humans
* Names should be meaningful
* Code shouldn’t be overly complex
* Code should be documented wkt

* Code should be organized
* Finding things in the

* Conventions sho S ?L'%Plﬁl'_%mﬁ
* Naming, orc SOPHISTICATON.

° COde Sh - LEONARDO DA VINCI

Iqunchcode + ¥ 1904labs

Basic Principles e With Pride

* Take pride in your code

* Yous
* Yous
* Yous
* Yous

NOou
NOou
NOou

Nou

d want to
d want ot
d want ot
d want ot

show it off
ners to read it
ners to emulate it

ners to use it

HOW TO MAKE A
GOOD CODE REVIEW

AT LEAST WE
DON'T NEED TO
OBFUSCATE IT

LW ® R A BEFOR
2 SHIPPING
Q
o
g %L
I 4! Al
RULE 1: TRY TO FIND

AT LEAST SOMETHING
POSITIVE

CSCI2340 - Lecture 15

Basic Principles Writing Code

That Lasts Forever

* Write code meant to be permanent
* Assume it will be around for 20 years
* Even if you anticipate doing so, you won’t throw i

* Write code so it can be extended in the future
* Code rarely shrinks
* Classes will get additional methoc
 Classes will be used in diffe
* Methods will get longe
* Fields and variab

10/9/24

Basic Principles

* Ease of debugging is more important than ease of writin
* Code defensively: it really helps

* Ability to find a location given class/method name

* This might be all you get from a stack trace or bug

* Avoid constructs that are difficult to debu

* Ease of changing the code is more |
* Easy to add new items
Easy to adapt, refactor
Localize as much as p
Minimize coupli
Document

10/9/24

OBJECT-ORIENTED
METRICS

Making this Concrete: Classes

* Files and Classes should be reasonably sized

* Not too long or too short: think about reading it
e 200-1000 lines is best

* Keep the number of top-level classes in a package r
 Number of files in a directory
e 5-20 would be a good target: think about findi
* Use inner classes, separate packages, or

e Inner classes should be small
e Ifitis > 100 lines (1 page/scree

* Make inner classes static

e Classes and files sho
* |nterfaces sho

10/9/24

Making this Concrete: Methods

* Methods / Functions should be reasonably sized

* Should fit on one page or screen
* If more complex, split into multiple methods o
* Or encapsulate in an inner class to provid

* Methods shouldn’t have too man
 Especially accessible methods (
 Parameters should be nece

* Parameter types shou
e Easier to underst

Modern Object-oriented Metrics

ing between objects :
I t nships the class has with other classes.
Number of children (NOC): the number of children for that clas

esponse for a class (RFAC): the of the response set for the
class, which consists of all the mthd fthtcl tgthrwth
IIthemthd of other classes called by those methods.

eighte s per class (WMPC): its complexity of behavior
= the sum fth cyclomatic complexities of each method of the
class.

Making this Concrete: Logging

* Use logging to track execution throughout coding
* You’ll eventually have to debug
* Have the system capable of explaining what is happening
* Logging finds bugs that you don’t otherwise see
* Add logging calls as you code as you write it

* Logging libraries exist
 Java has one built in
* Apache Commons Logging
e SIf4j is another widely used one for Java
e Easy to write your own as well
* Be wary of bugs introduced in logging

Making this Concrete: Defen

Add defensive checks liberally as you write the

Fields should be private (prevent others fro
* Keeps change effects local

Public methods shouldn’t trust
* Check that parameters h
* Before using them DefensiveCoding

Check outDCEES CleanCode [Spthmmrtmes
8 When tES | *Reduces Bugs

Testable Code
+
Unit Tests

«Improves Quality
« Confirms Maintenance
*Reduces Bugs

Valldat|on «Improves Predictability

d *More Consistent
* Reduces Bugs

Exception Handling

Making this Concrete: Conventions

e Use a consistent and complete set of conventions

« Standard conventions (e.g., Sun, Google)

e Quite extensive, but still don’t cover everything

* Might be overly restrictive for your purposes
e Use naming conventions to your advantage
* Class name should identify the package and w
* Looking at an identifier, you should be abl
* Avoid the possibility of name conflict
* Use file ordering conventions t
e Know where in a file to loo

* Formatting should be
» Split files into secti

THE COMMITTEE
DECIDED THAT THE FILE
NAMING CONVENTION
WILL START WITH THE
DATE, IN THE ORDER OF
MONTH, YEAR, DAY...

(1<)
O (4]
.

(0%

Dilbert.com DilbertCartoonistfgmal com

... THEN A SPACE,
THEN THE TEMPERATURE
AT THE AIRPORT, AND
THE HAT SIZE OF THE
NEAREST SQUIRREL.

Ly

Jrrvorsal Lok

4231 02011 Scomt Adams, Inc./ Dw by |

TO BE PERFECTLY
HONEST, IT WAS A
LONG MEETING AND

WE PROBABLY DIDNT
DO OUR BEST WORK
TOWARD THE END.

E B

Making this Concrete: Compilatior

* Choose a reasonable set of compiler v
* IDE-based compilers make this ea
* Warnings are there for a reasc

* You can use @S

b But you Sh (] Error List
@ OErrors | 1\ 2Warnings | (i) 0 Messages

The Fundamentals of Software

Making this Concrete: Simplicity

* Keep the code simple

* Efficiency probably isn’t the primary concern
* Nor is conciseness or minimizing initial typin COde

» Target ease of reading, understanding & SlmphClty
* Comment anything that mlght n

* To a programmer unfamiliar
* To yourself 5 years hence

 Ensure code can be
* And the metho
 Without havi

O'REILLY*

Use a Style Checker CheCkStyv -

* For Java: use checkstyle
 Either start with Sun or Google standards
* Change these to meet your needs and conventions

* Or go through the various checks and set
* Justify your decision

* Should have no checkstyle warning
e Use @SuppressWarnings when r

* For other languages
e C/C++: lint (original
* Dart: language enf
* TypeScript/
* Checkers

()

Effective C+
Third Editionssse_

Making this Concrete: Language i

Scott Meyefs ; '

* Every language has its quirks
* Some aspects are for ease of coding, not ease of reading
e Other aspects might be hard to understand
* What happens at run time needs to be obvious to the rea
e Other aspects might make debugging difficult
* Other aspects might make evolution difficult

| generally develop a set of rules for usi
* That emphasizes readability, maint
* Features not to use in the lan

* Features to use that migh
* Based on experience

* You can generall

SIAIS ONLLAIWOD TYNOISSTIONd ANSIMNOSIQaY &

Java Guidelines: Inner classes

e Use inner classes

* Use inner classes to hide implementation de
* Inner classes should not be exposed dire
* Inner interfaces in a common interfac
* Can enclose an algorithm with its
* But can implement global in

* Inner classes are likel
* Name and code ¢

e Avoid nesting i

Java Guidelines: Anonymous Clas

* Do not use anonymous or method-lo
* Class outernameS$10 tells you nothi
* Finding the code is difficult

* Anonymous classes will of

 Will need to becom
* Why not mak

Java Guidelines: Hierarchies

* Embed simple hierarchies as inner classes

* Inside the exposed (abstract) (root) class of the hierarchy

* Assumes hierarchy itself is not exposed
* This is an implementation detail edurekal

* Inner classes must be static in this case Necigg acs In Java)

* Only expose a hierarchy if necessary
* Prefer interface-based hierarchies -
* Allows hierarchy to evolve and change
* Only the root should be a visible ex

* Provide a visitor for hierarchi

CSCI2340 - Lecture 15

Java Guidelines: Imports

* Don’t use on-demand imports
* IDEs will add necessary imports, fix up i

* Use static imports only when r
e With your code, external li

* Use imports to acce
 When those
* To avoic

ersistence.Table;

import org.hi

Java Guidelines: GenericS ..o

Generic methods

import java.util.list;
import java.util.ArrayList;

class Utilities {
public static <T> void fill(List<T> list, T val) {
for(int i = 0; i < list.size(); i++)
list.set(i, val);
}
}

Get as strong typing as you can
Use generics for all collections, etc.

Don’t use Object

* As a method parameter
* Unless you really me

Learn how to cr
* Template

class UtilitiesTest {
public static void main(String [largs) {
List<Integer> intList = new ArrayList<Integer=>();
intList.add(10);
intList.add(20);
System.out.println("The original list is: " + intList);
Utilities.fill(intList, 100);

System.out.println("The list after calling Utilities.fill() is: " + intList);

The original list is: [10, 20]

The list after calling Utilities.fill() is: [100, 100]

Java Guidelines: Lambdas

* Use lambdas sparingly if at all
* Never use untyped lambdas
* Difficult to debug — where is lamk
* Environment is unclear at r
* Problems similar to anor

* Implicit typlng car

Lambda Syntax

* No arguments: {) -» System.out.printin(“Hello
* One argument:
* Two arguments: AXaRN PICEIXRESY

+ With explicit argument types:

[Inteper x, Integer)

+ Multiple statements:

Annotations in Java -- Definitions

* Understand the use of annotations in the language

* Built-in Annotations (e.g., @Override, @SuppressWarni
* Checking annotations (e.g., @Nullable, @NonNull)
* User defined annotations

* Compile-time annotation Processing
 Augment or convert the code
* But not in the way you would ex

* Dynamic annotation proc
* Effectively augment th

10/9/24

Java Guidelines: Annotations éﬂava‘

—

* Use built-in annotations (@Overrides) @nnotations

e Use checking annotations if available and enfo
* Otherwise, they can be misleading

* Don’t use an annotation processor or
* Seem convenient, but more of a hi

* Difficult to understand what is
e Unless you are intimately f
* And you won’t be in 5

* Dynamics have no

Java Guidelines: Other

e Use enumerations rather than integer consta
* Avoid using records (implicitly make thi
* Only this ‘this.” where necessary

* [nitialize in the constructor
 Not in non-static field de
* Initialize all fields pros e vt Wil

* Don’t depenc

public enum Season

JavaScript/TypeScript Guidelines

» Avoid nested function definitions | |
. . . Code Quality Measurement: AVACADIDT
* Especially those > 1 line (a simple call) Wi ittt
* Preferred: use async/await 5 |-t 2 I
 Code looks sequential, understandable A s | o
: wel - VARIABLE NAMING
 Alternative: use futures N
e But arguments are odd & not as clear to read

» Alternative: use separate functions
* Avoid lambdas (use named functio

* Use separate routings with Ex
* One for each component

* Google JavaScrip

10/21/24

DART & FLUTTER

Slc)d

THE COMPLETE GUIDE

Dart Guidelines

e Avoid nested function definitions
 Avoid lambdas

* Avoid complex nested widget definitions
* Define the components first, then the widg

* Separate the system into logical di
* Treat directories as packages

10/22/24

HOW TO MAKE A
GOOD CODE REVIEW

Code Reviews

RULE 1: TO FIND
AT LEAST SOMETHING
POSITIVE

Looking at code off-line

Have several uses

* Code style checking for project consis
* As a debugging tool
* As a testing tool

Take a piece of code (meth
* Have a panel of revi

Code Reviews

e Look For
e Style violations
* Language usage violations
* How readable and understandable is the co

e Simulating the execution to see if it
* Find possible inputs and condition
* Ask what-if questions

* You can do code review

* Read over your ow
* Thisis a good i
e Readit as

EXERCISE

* Code base (handout)

* Go through the code and note what you think should be ch
* To make it follow conventions
* To make it more readable
* To make it the way you might code it
* To make it easier to maintain/evolve/debug/..
* To make it better (you can always improv
* You should be able to find at least on

* Note what changes you would
* And then we will go over t

* We'll do this again for
* We'll do this wit

10/9/24

HOMEWORK

Added feature due Thursday; Video of your program due next Tuesday

Explicitly state coding standards for you project (as a team)

* Add this to your GitHub repo (coding styles should be there already
* Ensure the code meets these standards

* Set up eslint, checkstyle or similar tool for your project

Explicitly state the coding standards
* For the language you use for your assignment
e Can be the same as above if the same lang

Make sure your programming assign

* To these standards
 And meets the other codin
e Clean it upif not

Optional
e Pairup and

10/9/24

PROJECT

* Ensure that each person can go off and code thei
the system on their own.

* Project status reports in class next T
interspersed with program vide

* Project meeting?

