@ HOW TO SPOT A TESTER IN A SUPERMARKET

I'M GETTING ANY [OH... DO YOU KNOW WELL, YES, IN THE
ERROR AT THE WHAT MIGHT HAVE PROMPT TO ENTER
SELF-SERVICE CAUSED THE ERROR? THE NUMBER OF

MAKE (T 2" BREAK IT »"

S0, WALK ME B WELL, T WAS DOING SOME Lk
THROUGH THE SECURITY TESTING BY TRYING
DEFECT AGAIN TO FLOOD THE SYSTEM. T

THEN 6OT THIS ERROR,

WHICH, BY THE WAY, IS A

PRETTY USELESS ERROR!

... 1 ENTERED
4,294,967 297

CUSTOMER SERVICE CUSTOMER SERVICE

They weren't so much different, but they had different goals

Andy Glover cartoontester.blogspot.com Copyright 2010

When the developer When the quality
tests team tests

) O

when the project wWhen the customer
manager tests

Grading

* Project Grading
* Based on the various presentations

* Based on reading code in the repositories
* Code should meet the criteria specified in the cco
* Code should be designed to be usable man
e Code should be designed for maintenar

e Based on other items that shoulc

* Program Grading
* Based on handing i
* Possibly on readi

10/28/24

Verification versus Validation

* Formal verification

* Proving that the program is correct
* Proof checkers are getting much better

* Requires a formal definition of corre
* This is often harder to write than

* Proving correctness of the
* Requires modeling the

* Model might be i

e Can be very di

* Muc

e One pr

Problem
Situation

¥| Problem Statement ‘
(Specification) P

I

Implementation ‘

:' (Program Code)

Validation

i TGO,

Importance of Testing

Software Testing could be a course by itself
* Terminology, tools, techniques

Who should find the bugs
* Programmer
 Company (QA team)

* End User

Testing can help tell if your program works

* What does “work” mean

* Does the program do what it should?
* (Can the tester “break” the program
* Will users “break” the prograrr

* Not whether it is correct

Being your own teste

Software Testiug and its Importance

Program testing can be used to show
the presence of bugs, but never to show

Limitations of Testing their absence

— E. Dyjkstra in Structured Programming

 Testing does not define the program behavior
* Doesn’t provide a semantics for the program
* Doesn’t provide specifications (formal or otherwise) for the program
* Doesn’t consider everything involved in correctness
* Doesn’t consider all possible inputs

 Testing will tell you what is broken, not what works
* Give you confidence in the program, not guarantees
* Dijkstra: Testing can only show the presence of bugs, not their absence

* A successful test case is one that fails
* Good testing tries to break the program, not validate it
* Good testers are devious and good at breaking things
e Assumption is that if it can’t be broken, it mainly works

EXERCISE

Consider the following program. It takes three input d
values representing the three lengths of the sides
as parameters. The method returns a string indi
whether the triangle is scalene (i.e., no t
isosceles (two sides equal) or equilat

e Create a test set for this met
* Write down your tests

10/28/24

What Test Cases Did You Develop?

Discussion

* Do your tests include both the inputs and the expected output
 How many tests did you create?

 How many tests are needed to validate this program
e 4...165 depending on who you ask
* Depends on what you want to check, how much

* Did you test for ...
* Valid cases (all three outputs)
* All combinations of 2 sides being
* Non-triangles (1,2,5)
* Invalid inputs (O or negati
e Approximate result

 And this is a trivi

10/28/24

Different Types of Testing

 Testing can be done at various levels
* From individual function or method to system

 Testing can be done for different software aspects
* Functionality Types of Software Testing
* Security
* Performance
y Useablllty TG merwo 4 ace eprancE NG asmino
e Installation [

* Compatibility SDEIBEL s iet® i

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

nn
cc
llllllllllllllllllllllllllll

D - Lecture 17

Unit Testing

U . t | t .
How Developers Test Their Own Code?

® —
* Unit testing: methods or functions (®) #

Checking individual methods or functions T
Junit for Java, similar systems for other languages
Sometimes worth doing for complex standalone methods
Worth doing for libraries and common code
Worth doing to prevent regressions (error history)
Difficult to do for much of an integrated syste

* Unit testing: classes

* Methods generally don’t function o
e Functions often don’t function o
* Need to set up the class to te
* Probably want to test
* Add and remove

e Still can be diffi

10/28/24

Production Code

Unit Testing: Packages

il

Classes generally don’t operate in isolation
* They require other classes in the package and system

Need to set up a whole environment to test them
* Multiple objects of multiple types
* Then you can test individual classes and methods

Junit provides some hooks for this

* @Before, @BeforeClass
* @After, @AfterClass

Provide a set of tests for a pz:
* Including package, cla
* Early on you neec

Integration Testing

Multiple people and packages need to work togethe edurekal

. T campanent
* Lots of potential errors i
* Wrong interface assumptions
* Different interface assumptions

* Always takes longer than anticipated
Testing the interactions betwee

More focused on function
e Can be higher-leve
But should inc

System Testing

» Testing the whole system in operation

* Involves running through your scenarios
* This is the minimum you need to do
* Should include all scenarios, with tr
* Include error-handling with the
* Automated if possible

e Additional tests based

e User reported p
e Often the

Dogfooding

* Using what you are writing is a good habit to get into
e Especially if you use it to assist in its development
* Force yourself to use it even when it is a bit buggy
* Provides testing without formal test cases
* Provides experience
* User experience (UX), performance, bugs, missing features, ...
* Provides tests of latest version of the system (prerelease)
* Run your program from a debugger to catch bugs as they occur
e Your projects can do this
* Speech, loT, Accessibility, LLAMA

* Ul Gen, DJ, Agentic

* Note that you won't be as critical as real users
* You are too tolerant of your own mistakes Theiet e A >3/ Froducts

* You know how difficult it might be to fix s

e But you can use it when others ca

* Note potential problems even i
* Write them down so you

10/28/24

Continuous Integration and Testing

* We've talked about this before
e Using a single branch
* Merging on a regular (daily) basis
* Running the experimental versio

CONTINUOUS |\ %
INTEGRATION

N
O)

EEEEEEEEEEEEE

* It also involves testing

; Keep End Avoid Do not
Slnple - | user in Mind Repetition Assume
[] .
EOSHEC SOn= Identifiable e Te_stmg Self-cleaning
Coverage Techniques

Repeatable | Peer Review

I Guru9‘9.com‘])
I [

Creating good tests is difficult
e Can be as much work as writing the original code
 Difficult to think of all possible tests
 Difficult to ensure that the tests cover
 Difficult to check the results acc

Good test cases are designec
* This is puzzle solving ag
* How can | break tr
* What can | dc

 What are
Black k

Objectives

Identify the
Requiremen ts

Include
Preconditions

Organize and
maintain

Coverage

* How to measure the effectiveness of a test suite
* Has it found all the bugs
* Has it missed any obvious bugs
 How confident in the program are you if i

* A concrete measure of this is cove

* What part of the program is

* Covered means executed k
* Any code not covered

* But what does cc
e Other meas Test Coverage

Coverage Report - All Packages

Package
All Packages 84%
junit.extensions B82%
junit.framework 76%
junit.runner 49%
junit.textui 76%

org.junit 85%
org.junit.experimental 91%
org.junit.experimental.categories 100%

org.junit.experimental.max 85%
org.junit.experimental.results 92%
org.junit.experimental.runners
org.junit.experimental.theories 96%
org.junit.experimental.theories.internal B8%
org.junit.experimental.theories.suppliers 2 100%
org.junit.internal 94%
. M et h O d C Ove ra g e org.junit.internal.builders 8 98%
org.junit.internal.matchers 75%
internal.requests 96%
[org.junit.internal.runners 73%
. Eve r m et h O d I S eXe C u te d b SO m e tes org.junit.internal.runners.model 100%
org.junit.internal.runners.rules 100%
° . . org.junit.internal.runners.statements 97%
. I S t h I S S u ffl C I e nt ? org.junit.matchers

(] org.junit.rules B9%
org.junit.runner 93%

org.junit.runner.manipulation 85%
. C I I org.junit.runner.notification 100%
a C Ove ra ge org.junit.runners 98% |

org.junit.runners.model 11 82%

o Eve ry m et h O d Ca I I i S eX a Report generated by Cobertura 1.9.4.1 on 12/22/12 2:25 PM.

* Line coverage
* Every line of

wkSum: BRANCH COVERAGE

1. priocSum (w3, we) { E—
2. Ik result =3+b; A

3. 1§ (resuls 20) f] ‘

4 ?vmtcoﬁ(red" rcsu&l:) -

8
6

Types of Coverage LT
[:el&'_elo“o\h\“g‘x . v\\

t
* Statement coverage or 257
* Every statement in the code is executed

* Handles cases of multiple statemer

* if (<condition>) <statement>
* condition false implies line

* Branch coverage

* Every alternati
* if (<cor

LET'S CONSIDER ANOTHER TXAMPLE

-vod man(\{ Tests: (x=8.4-6)
- floak XY : =5,y=-5)

Types of Coverage e TG eammgm
. =L3 X \ (
e X=g+2
- wxelxy, (

- oxxilelyy;

e Condition coverage
* Every condition in a branch is covered witt

* Handling && and | | conditions
e if (x && y && 7)
* Four cases: x false; x true, y
e Statement coverage at

* Path coverage
* Every path tr
* Sequenc

Getting Coverage Information

* Most IDEs can provide coverage information while

* Eclipse, IntelliJ collect coverage data (line, branch/
* You must run for profiling, not for debugging
* VS Code has plugins that can do this

* Provide a user interface to show coverec
* prof and gprof for C/C++ programs

* Code Bubbles automaticall
* Computes line, branch,
* Uses line coverage fa
Uses coverage

ssssssssssssss
ttttttttttttttt

tttttttttttttt

;;;;;;
;;;;;;
ccccccc

sssssssssssssss

Code Bubbles Test Managern

-

-

Status State Class Test Name
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl(net.n3.nanoxml.ParserT...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl0(net.n3.nanoxml.Parser...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl1(net.n3.nanoxml.Parser...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl2(net.n3.nanoxml.Parser...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl3(net.n3.nanoxml.Parser...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl4(net.n3.nanoxml.Parser...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl5(net.n3.nanoxml.Parser...
FAILURE UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsingl6(net.n3.nanoxml.Parser...
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Open testParsing16
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Debug testParsing16(net.n3.nanoxml.ParserTest1)
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing - . .
SUCCESS |UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Run Test testParsing16(net.n3.nanoxml.ParserTest1)
SUCCESS |UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Work on Failure for testParsing16
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsind Show Execution for testParsingl6
SUCCESS |UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Test Running Mode
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Run Option
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing
SUCCESS |UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing StOP current test
SUCCESS |UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsind Update Test Set
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing Make Floating
SUCCESS UP_TO_DATE |net.n3.nanoxml.ParserTestl testParsing9(net.n3.nanoxml.ParserT...

SHOW ALL

SHOW PENDING

SHOW FAIL

RUN SELECTED RUN ALL

User Interface Testing

Testing the user interface
* Testing if the functionality works
* Testing the appearance of the interface
* Testing usability of the interface

Testing with actual users
* Dogfooding
* Alpha and beta testing
* A-Btesting
Testing functionality with simulated interaction
* Test case runs an Input script

* Tool support: Selenium and similar package
Testing different platforms (browser
Testing accessibility and interna
Testing installation and p

10/28/24

Graphical User
Interface (GUI)
testing

Classic User Interface Testing

-

]
- — —
TESTNGIN |
* e ~
(] o) (] .
(000000000 '
NG

* Lab-based testing
e Recruit (and pay) potential users
* Train them on the system
 Have them use it in a lab setting

* Record what they do
* Have them talk through what the
 Save video and transcript
* Analyze behavior (erra

* Survey the users af
* To understar
* Togetc

Continuous User Testing

* Gather information from a running system

* Example: command sequences, # errors, # undos, ...

* Example: faults that are hidden from the user
* Example: timings and performance

* Can be augmented with questionnaire
» Simple: do you like/dislike the system
* More advanced: full guestionnai

* Dogfooding as a form of co
e But you need to note

* A-B testing

CONTINUOUS

-
X
S
USER TESTING

Test Maintenance

* Tests need to be kept up-to-date
* Need to evolve as the code evolves
* Need to be augmented as new problems are found

* If you don’t run tests all the time
* The tests eventually become useless
* Or require more work than they are worth

* Maintaining tests can be a lot of work
* If you have lots of tests
* If the tests weren’t written well and doc
* If you haven’t checked the tests fa

e Evolve tests as you evolve code
* This is implied by conti

CSCI2340 - Lecture 17

Test Suites

CCCCCC

* A test suite is a set of tests _—
* All the tests for all components of the
* Junit : run all tests, all testsina c

* Problems with test suites
* Serious testing can yie

* Running all of the
* Check the

;
' éonplzu Cuide
e

TEST CASE
PRIORITIZATION

Test Prioritization

* Problem: Running a test suite can take hours or longe
* Lots of tests, some tests can be time consuming

* One approach is to order or prioritize the te

* Test that are likely to fail are done first
* Can be based on what code has cha

» Tests that cover that code should be
* For some changes, this might b

 Can be based on other cri
* E.g., tests that failec

* Only run tests a
* This has bee

e
= Things To Consder buns
*\lut a5 Prisrtzatioe y ";a

[J

 Test Suite
' Minimization

Test Minimization

* Minimize the size of the test suite
* Coverage provided by multiple tests ca
* Doesn’t mean the tests are identica
* But often means the tests are rec
* Find a minimal set of te
e Same as the originc
* Based on type of

* This is NP-

Programming Assignment

e | want to do a code review next class

* If you might like your program reviewed
* Please send it to me (pointer to a repo is good e

* | will select one submission

* Make sure it is anonymous
* And provide feedback on it

* Do this today at some poi
* If | don’t get anythi

10/28/24

PROJECT

* Should have individual components working next w
* Want to have a minimal system running fairly soon
* Status reports were encouraging in this line

* Make sure you have the framework f

* Include a script to run all the test
e (ant or maven or gradle); insi

e Add information on h
e Should be noted i

10/28/24

