
Testing I
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

10/28/24 CSCI2340 - Lecture 17 1

Grading

• Project Grading
• Based on the various presentations
• Based on reading code in the repositories
• Code should meet the criteria specified in the course
• Code should be designed to be usable many years in the future
• Code should be designed for maintenance and evolution

• Based on other items that should be in the repo
• Program Grading
• Based on handing in all portions in in a timely fashion
• Possibly on reading code as well

10/28/24 CSCI2340 - Lecture 17 2

Verification versus Validation
• Formal verification
• Proving that the program is correct

• Proof checkers are getting much better
• Requires a formal definition of correctness

• This is often harder to write than the program itself
• Proving correctness of the code
• Requires modeling the program (finite state)

• Model might be in error or too abstract
• Can be very difficult

• Much can be automated, but not all
• One practical solution is testing
• Another is partial correctness (covered after testing)

10/28/24 CSCI2340 - Lecture 17 3

Importance of Testing
• Software Testing could be a course by itself

• Terminology, tools, techniques
• Who should find the bugs

• Programmer
• Company (QA team)
• End User

• Testing can help tell if your program works
• What does “work” mean

• Does the program do what it should?
• Can the tester “break” the program?
• Will users “break” the program?

• Not whether it is correct
• Being your own tester

• You should test all code before committing it
• Force yourself (and your team) to use the system (a lot)

• Dogfooding if appropriate

10/28/24 CSCI2340 - Lecture 17 4

Limitations of Testing
• Testing does not define the program behavior
• Doesn’t provide a semantics for the program
• Doesn’t provide specifications (formal or otherwise) for the program
• Doesn’t consider everything involved in correctness
• Doesn’t consider all possible inputs

• Testing will tell you what is broken, not what works
• Give you confidence in the program, not guarantees
• Dijkstra: Testing can only show the presence of bugs, not their absence

• A successful test case is one that fails
• Good testing tries to break the program, not validate it
• Good testers are devious and good at breaking things
• Assumption is that if it can’t be broken, it mainly works

10/28/24 CSCI2340 - Lecture 17 5

EXERCISE

Consider the following program. It takes three input data
values representing the three lengths of the sides of a triangle
as parameters. The method returns a string indicating
whether the triangle is scalene (i.e., no two sides are equal),
isosceles (two sides equal) or equilateral (all sides equal).
• Create a test set for this method
•Write down your tests

10/28/24 CSCI2340 - Lecture 17 6

What Test Cases Did You Develop?

10/28/24 CSCI2340 - Lecture 17 7

Discussion
• Do your tests include both the inputs and the expected output
• How many tests did you create?
• How many tests are needed to validate this program
• 4 ... 165 depending on who you ask
• Depends on what you want to check, how much confidence you need

• Did you test for …
• Valid cases (all three outputs)
• All combinations of 2 sides being equal
• Non-triangles (1,2,5)
• Invalid inputs (0 or negative values, non-numbers (NaN), large numbers, …)
• Approximate results (5.00000000000000001 vs. 5)

• And this is a trivial program …

10/28/24 CSCI2340 - Lecture 17 8

Different Types of Testing

• Testing can be done at various levels
• From individual function or method to system

• Testing can be done for different software aspects
• Functionality
• Security
• Performance
• Useability
• Installation
• Compatibility

10/28/24 CSCI2340 - Lecture 17 9

Unit Testing
• Unit testing: methods or functions

• Checking individual methods or functions
• Junit for Java, similar systems for other languages
• Sometimes worth doing for complex standalone methods
• Worth doing for libraries and common code
• Worth doing to prevent regressions (error history)
• Difficult to do for much of an integrated system

• Unit testing: classes
• Methods generally don’t function outside of their class

• Functions often don’t function outside their file
• Need to set up the class to test a method

• Probably want to test multiple methods or functions at once
• Add and remove from a structure…

• Still can be difficult in an integrated system (classes rarely operate in a vacuum)

10/28/24 CSCI2340 - Lecture 17 10

Unit Testing: Packages
• Classes generally don’t operate in isolation

• They require other classes in the package and system

• Need to set up a whole environment to test them
• Multiple objects of multiple types
• Then you can test individual classes and methods

• Junit provides some hooks for this
• @Before, @BeforeClass
• @After, @AfterClass

• Provide a set of tests for a particular package or directory
• Including package, class, and method tests
• Early on you need to test functionality without other packages

• Mocking, stub implementations, tracing interactions
• This is where an interface-based design is helpful

• Should be done within the package (so methods don’t have to be public)
• Test class or set of test classes either in same directory or in parallel directory (maven)

• Useful for testing your individual components

10/28/24 CSCI2340 - Lecture 17 11

Integration Testing
• Multiple people and packages need to work together

• Lots of potential errors
• Wrong interface assumptions
• Different interface assumptions

• Always takes longer than anticipated
• Testing the interactions between packages
• More focused on functionality than problems

• Can be higher-level package tests with actual packages
• But should include error conditions as well

• Note that these should be handled by defensive coding

• Different from interface testing
• Testing all the calls in an interface
• Especially with RESTful interfaces
• This can focus on finding problems
• Generally included in package testing

10/28/24 CSCI2340 - Lecture 17 12

System Testing
• Testing the whole system in operation
• Involves running through your scenarios
• This is the minimum you need to do
• Should include all scenarios, with their variations
• Include error-handling with the scenarios
• Automated if possible

• Additional tests based on
• User reported problems

• Often these can be view as unit tests (with some work)
• Problems found during debugging

• Again, these are often viewed as unit tests
• Additional scenarios

• Based on user experiences

10/28/24 CSCI2340 - Lecture 17 13

Dogfooding
• Using what you are writing is a good habit to get into

• Especially if you use it to assist in its development
• Force yourself to use it even when it is a bit buggy
• Provides testing without formal test cases
• Provides experience

• User experience (UX), performance, bugs, missing features, …
• Provides tests of latest version of the system (prerelease)
• Run your program from a debugger to catch bugs as they occur
• Your projects can do this

• Speech, IoT, Accessibility, LLAMA
• UI Gen, DJ, Agentic

• Note that you won't be as critical as real users
• You are too tolerant of your own mistakes
• You know how difficult it might be to fix something
• But you can use it when others cannot
• Note potential problems even if you don’t fix them

• Write them down so you remember them

10/28/24 CSCI2340 - Lecture 17 14

Continuous Integration and Testing

•We’ve talked about this before
• Using a single branch
• Merging on a regular (daily) basis
• Running the experimental version of the system

• It also involves testing
• Run all the test cases with each merge
• Running tests is part of the merge process
• Having an adequate set of tests is part of the process

•We’ll look at this in more detail next time
10/28/24 CSCI2340 - Lecture 17 15

Creating Test Cases
• Creating good tests is difficult

• Can be as much work as writing the original code
• Difficult to think of all possible tests
• Difficult to ensure that the tests cover all possible cases
• Difficult to check the results accurately

• Good test cases are designed to break the program
• This is puzzle solving again
• How can I break this program
• What can I do that is unexpected
• What are the cases that will cause problems

• Black box versus white box testing
• Tools are being developed to automate this

• And best practices
• Covered next time

• Problem: What is a GOOD set of tests?

10/29/24 CSCI2340 - Lecture 17 16

Coverage
• How to measure the effectiveness of a test suite
• Has it found all the bugs
• Has it missed any obvious bugs
• How confident in the program are you if it passes the tests

• A concrete measure of this is coverage
• What part of the program is covered by the test set

• Covered means executed by some test in the set
• Any code not covered hasn’t been tested

• But what does coverage mean
• Other measures are also used
• Coverage is only as helpful with quality tests
• Mutation testing (next time)

10/28/24 CSCI2340 - Lecture 17 17

Types of Coverage
• Method coverage
• Every method is executed by some test
• Is this sufficient?

• Call coverage
• Every method call is executed by some test

• Line coverage
• Every line of code is executed by some test
• Better than method coverage
• Not always achievable (defensive coding)
• Typically, this is what is thought of as coverage

• What the coverage user interfaces show

10/28/24 CSCI2340 - Lecture 17 18

Types of Coverage

• Statement coverage
• Every statement in the code is executed by some test
• Handles cases of multiple statements on a line
• if (<condition>) <statement>

• condition false implies line coverage, not statement coverage

• Branch coverage
• Every alternative in each branch is executed by some test
• if (<condition>) <statement>

• condition true implies statement coverage
• Branch coverage implies a test with true and a test with false

10/28/24 CSCI2340 - Lecture 17 19

Types of Coverage

• Condition coverage
• Every condition in a branch is covered with true and false
• Handling && and || conditions

• if (x && y && z)
• Four cases: x false; x true, y false; x,y true, z false; x,y,z true

• Statement coverage at the assembly level
• Path coverage
• Every path through the program covered by some test
• Sequences of conditions

• Ten sequential independent if statements might yield 1024 paths
• Talked about, but rarely used

10/28/24 CSCI2340 - Lecture 17 20

Getting Coverage Information
• Most IDEs can provide coverage information while testing
• Eclipse, IntelliJ collect coverage data (line, branch/condition)

• You must run for profiling, not for debugging
• VS Code has plugins that can do this

• Provide a user interface to show covered lines
• prof and gprof for C/C++ programs (outside of IDE)

• Code Bubbles automatically provides coverage for tests
• Computes line, branch, call coverage
• Uses line coverage for fault localization
• Uses coverage to note when tests should be rerun
• No current user interface otherwise

• Code Bubbles Test management

10/28/24 CSCI2340 - Lecture 17 21

Code Bubbles Test Management

10/28/24 CSCI2340 - Lecture 17 22

User Interface Testing
• Testing the user interface

• Testing if the functionality works
• Testing the appearance of the interface
• Testing usability of the interface

• Testing with actual users
• Dogfooding
• Alpha and beta testing
• A-B testing

• Testing functionality with simulated interaction
• Test case runs an Input script
• Tool support: Selenium and similar packages

• Testing different platforms (browsers, mobile platforms, window sizes, …)
• Testing accessibility and internationalization
• Testing installation and platform compatibility

10/28/24 CSCI2340 - Lecture 17 23

Classic User Interface Testing
• Lab-based testing
• Recruit (and pay) potential users
• Train them on the system
• Have them use it in a lab setting

• Record what they do
• Have them talk through what they are doing
• Save video and transcript
• Analyze behavior (errors, confusion, # clicks, timings, …)

• Survey the users after
• To understand what they did and why
• To get other’s opinions on the user interface

10/28/24 CSCI2340 - Lecture 17 24

Continuous User Testing
• Gather information from a running system

• Example: command sequences, # errors, # undos, …
• Example: faults that are hidden from the user
• Example: timings and performance

• Can be augmented with questionnaires
• Simple: do you like/dislike the system
• More advanced: full questionnaire with feedback

• Dogfooding as a form of continuous testing
• But you need to note and report errors

• A-B testing
• Some users run version A, some run version B (chosen at random)
• Get feedback, monitor errors, timings, etc.
• Need a significant user base

10/28/24 CSCI2340 - Lecture 17 25

Test Maintenance
• Tests need to be kept up-to-date
• Need to evolve as the code evolves
• Need to be augmented as new problems are found

• If you don’t run tests all the time
• The tests eventually become useless
• Or require more work than they are worth

• Maintaining tests can be a lot of work
• If you have lots of tests
• If the tests weren’t written well and documented
• If you haven’t checked the tests for a long time

• Evolve tests as you evolve code
• This is implied by continuous integration

10/28/24 CSCI2340 - Lecture 17 26

Test Suites

• A test suite is a set of tests
• All the tests for all components of the system
• Junit : run all tests, all tests in a class, a single test

• Problems with test suites
• Serious testing can yield large test suites: 1000’s of tests
• Running all of these can take hours or days
• Check the results of all the tests can be difficult

10/30/24 CSCI2340 - Lecture 17 27

Test Prioritization
• Problem: Running a test suite can take hours or longer
• Lots of tests, some tests can be time consuming

• One approach is to order or prioritize the tests
• Test that are likely to fail are done first
• Can be based on what code has changed

• Tests that cover that code should be tried first
• For some changes, this might be large

• Can be based on other criteria
• E.g., tests that failed recently should be tried first

• Only run tests affected by changes
• This has been an area of active research

10/28/24 CSCI2340 - Lecture 17 28

Test Minimization

•Minimize the size of the test suite
• Coverage provided by multiple tests can overlap
• Doesn’t mean the tests are identical
• But often means the tests are redundant (not always)

• Find a minimal set of tests that achieve the same coverage
• Same as the original set
• Based on type of coverage one is trying to achieve

• This is NP-complete; but good approximations exist
• This has been an area of active research

10/28/24 CSCI2340 - Lecture 17 29

Programming Assignment

• I want to do a code review next class
• If you might like your program reviewed
• Please send it to me (pointer to a repo is good enough)

• I will select one submission
• Make sure it is anonymous
• And provide feedback on it

• Do this today at some point (or before the weekend)
• If I don’t get anything suitable, I will pick one at random

10/28/24 CSCI2340 - Lecture 17 30

PROJECT

• Should have individual components working next week
• Want to have a minimal system running fairly soon
• Status reports were encouraging in this line

•Make sure you have the framework for testing
• Include a script to run all the tests
• (ant or maven or gradle); inside or outside IDE

• Add information on how to compile and test
• Should be noted in README files in your repository

10/28/24 CSCI2340 - Lecture 17 31

