
Testing II
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

10/28/24 CSCI2340 - Lecture 18 1



Creating Test Cases
• White box vs Black box testing

• Black box: only the interface is known
• Tester must assume something about the code

• White box: code is available
• Tester can read the code to find potential problems
• Much easier and more practical

• Basic Test Cases (programmer created)
• Test basic functionality to see if program works

• Needed to assist development
• Can run through typical scenarios
• Test extended functionality as it is added
• Make these permanent

• Tests to ensure the program can handle bad inputs
• Tests to catch possible errors

• A successful test case finds a bug
• These are only a small fraction of a test suite

11/6/24 CSCI2340 - Lecture 18 2



Creating Test Cases
• Each user reported bug should have a test case
• Unless the bug and fix are trivial
• To duplicate & fix the bug (and check the fix works)
• To prevent regression
• Most tests in a suite are of this type
• These can be from actual bug reports
• Or from automatically recorded stack traces 

• Creating test cases to ensure complete coverage
• You want to ensure all code is tested
• Based on type of coverage desired
• Additional tests are generally needed to achieve this

11/6/24 CSCI2340 - Lecture 18 3



Creating Test Cases
• Creating test cases is a lot of work
• Finding appropriate arguments to get coverage
• Finding arguments that might cause the system to fail
• Finding arguments that duplicate a bug report or stack trace
• Setting up the appropriate environments
• Checking the results
• Programmers get sloppy (tests are buggy, not the code)

• This leads to work on automatic test generation
• With a variety of different approaches
• Commercial and research-based systems exist
• LLMs (e.g., Claude, ChatGPT) can do some of this (but not all)

10/28/24 CSCI2340 - Lecture 18 4



Symbolic Execution

• For each coverage point (line/branch/condition)
• Determine constraints on variables needed to get there
• Trace constraints back to the start of the function
• This gives you constraints on the test inputs

• Construct new inputs based on these constraints
• Often difficult to do
• The problem in general is unsolvable (halting problem)
• Works best with numerical routines and inputs
• Can use shape analysis for objects
• Often fails

10/28/24 CSCI2340 - Lecture 18 5



Concolic Testing
• Combination of concrete testing and symbolic execution
• Do symbolic execution along a concrete execution path

• Easiest when starting with a failed execution
• Given values at that point: compute values at the start of the function

• Forward analysis
• Maintaining constraint expressions for each variable

• More practical than pure symbol execution
• But not as complete
• And not necessarily more useful

• Test generation tools
• EvoSuite, qodo, …

• Work okay, but not great
• But is this what you want?

• What is the test output; what is successful?
• Is the test an important one?

10/28/24 CSCI2340 - Lecture 18 6



Using LLMs to Create Test Cases

• You can ask a LLM to create test cases for a method
• It can do a reasonable job of creating basic tests
• Normal functionality
• Edge cases

• BUT
• It can not achieve strong coverage
• It can provide the wrong outputs 
• It is more geared to method rather than system testing

• This will improve in the future
• But still probably won’t be complete

10/29/24 CSCI2340 - Lecture 18 7



Creating Tests for a Bug
• This is a standard part of debugging

• Much of a test suites is developed this way
• Research: how to automate this

• If a bug report has a stack trace
• If the bug report has enough information
• Using concolic testing techniques
• From a debugger situation

• ROSE test generation (using debugger & input)
• ROSE is our automatic program repair tool
• ROSE knows the failure symptom and the environment

• Identifies what portions of the environment are needed for the test
• Environment can be queried via the debugger at the time

• Should be able to generate a test case based on this
• Difficulty is recreating the environment using only accessible methods
• Might not know the correct result (other than no exception)

10/28/24 CSCI2340 - Lecture 18 8



Testing Interactive Programs

• Problem
• The test is a sequence of interactions
• You don’t want to have a user do the interactions
• Although this is done

• You don’t want to redo the test if the UI is rearranged
• Different window sizes, visual updates, …

• Various solutions exist
• Generating RESTful calls without a UI (curl)
• Tracking and repeating user interactions
• Writing code to emulate a user using widget accessors

10/28/24 CSCI2340 - Lecture 18 9



Tools for Interactive Testing
• Tools exist to help with interactive testing
• Selenium is the one I’ve seen used the most

• Designed for web pages and the browser
• Appium/Selendroid extend it for mobile devices
• Similar tools exist for desktop applications

• Can record a sequence of user interactions
• Generates a program that identifies widgets by CSS accessor

• User can write programs to emulate the interactions
• Starting with recorded or separately
• Separate functions for common interactions

• Result is a testing framework for the application
• Flutter/Dart: built in tool + several alternatives
• Other tools: Squish, Sikuli, …
• Research: generating tests for RESTful calls based on front end

10/31/24 CSCI2340 - Lecture 18 10



Fuzz Testing

• Another approach to automatic test generation
• Generate invalid, unexpected or random inputs to a routine
• Try out lots of values to get a function to fail
• Generate tests where the function fails

• Like letting naïve users try the software
• Cat on the keyboard
• Freshmen attacking FIELD
• 5-year-old at the keyboard

10/28/24 CSCI2340 - Lecture 18 11



Mutation Testing

• Change the code slightly (semi-random mutations)
• Standard set of possible mutations
• E.g., invert a conditional

• Check if the test cases can detect the change
• This helps evaluate the test suite
• Note that many obvious errors are not detected

• Find test cases that can detect the change
• This broadens the test suite

10/28/24 CSCI2340 - Lecture 18 12



Test Environments
• How are you going to run your tests?
• Testing and production can be quite different
• Production database with real people, data
• Has external effects

• Charging credit cards, sending data to warehouse, causes things to be shipped
• Accumulating usage data for business purposes
• Requiring external web browser or talks to real hardware
• Changing files in the file system

• All these might not work in a test environment
• And you don’t want to test new code in production
• Production code needs to be tested and robust
• Can’t afford to break hardware while testing

10/28/24 CSCI2340 - Lecture 17 13



Test Environment Contents
• Separate git branch from the production system

• Or just don’t pull onto production host until version is stable
• And test from current version on another host

• Or create the branch when production is ready (it will still change)
• This is what is typically done in active systems

• Or run/compile time flags
• Or detect what machine it is running on (or who is running it)

• Separate database
• Preferred over special items in production database

• Separate hooks for external features
• Payments, real-world consequences
• Simulation of outside hardware
• Simulation of the real world (outside, real-time events)

• Might want to cache outside queries
• Separate machine to run on

10/28/24 CSCI2340 - Lecture 17 14



Setting up a Test Environment

• Should have a script to do this 
• Restore the test file system to a known state
• Restore test database to a known state
• Set up any other environmental data
• Even if you only use it for running a test suite

• Some can be done with the individual tests
• Using @Before, @After, @BeforeClass, @AfterClass
• Not ideal for file system, database setup

• Handling multiple machines and processes
• Might require test harness or coordinator

10/28/24 CSCI2340 - Lecture 17 15



Testing System Components
• Want to check calls to other components are right, but not have a real effect

• Want to test a web back end without using a browser
• Want to test web front end without using the back end
• Want to test payment without paying, shopping without buying
• Want to test SHORE without trains
• Want to test Pinball without the pinball machine

• Rather than trying to use actual code
• Create code that mimics the actual code
• Might be simple (accept a particular card number, reject others)
• Might check that behavior of the system is correct
• This is called MOCKING
• Same issue when system pieces are missing
• Some external libraries do this for you already (Stripe, for example)

• Simulation is another alternative
• Especially for hardware systems and real-world interaction
• Simulated pinball machine; simulated smart house

10/28/24 CSCI2340 - Lecture 18 16



Mocking
• Mock component is generally much simpler than actual one
• Provide reasonable returns, but generally fixed return values
• Provide hooks to handle the whole interface
• With minimal responses unless needed for testing
• Provide minimum functionality needed to support tests

• Methods that take inputs should check their values
• This is part of testing

• Providing logging for additional test validation
• Frameworks exist to help create mocking code
• Mockito is the standard for Java
• Easier, but not necessarily recommended in the long term

10/28/24 CSCI2340 - Lecture 18 17



Mocking

•Mocking code is not throw-away
• Especially mocking for testing
• Take care in writing it as you would system code
• Buggy mocking code will cause bad testing
• And it is likely to be buggy

• Use established coding practices
•Might want to create mocking code for development
• For portions of the system not yet implemented

10/28/24 CSCI2340 - Lecture 18 18



Security Testing
• No system is totally secure

• Need to test for potential security problems

• Checking for known security problems
• C/C++: checking for buffer overflow possibilities
• Web Apps: SQL injection, XSS, DoS and other attacks

• Dynamic security checking tools exist (usually web-oriented)
• Machine vulnerabilities
• SQL injection attacks, Cross-site scripting, Denial of Service, server configuration

• You should think about applying these to your system
• Ethical hacking

• Static security checking tools exist (verification) is often done in addition to testing
• Partial correctness formal methods

• Checking buffer overflows
• Checking tainted data
• Checking program states

• Since you want to check ALL inputs

10/28/24 CSCI2340 - Lecture 17 19



Performance Testing

• Performance can be important
• Resource utilization (CPU and memory)
• User perception
• 100ms makes a noticeable difference in usability

• Ability to handle large data, large loads, complex cases, …
• Stress testing
• What happens if files are large (user uploads 100G file)
• What happens if you have 100,000 users
• How does the system degrade (or does it crash)

10/28/24 CSCI2340 - Lecture 18 20



Performance Testing

• Typically, performance doesn’t matter
• 10% of the code uses 90% of the time (5/95)
• Most of that 10% is outside of your control
• Necessary functionality
• Inherent to the application

• Performance only matters if there is a problem
• User interface is too slow 
• Using too many resources (memory, CPU, disk, …)
• Otherwise, simplicity and ease of coding reign

10/28/24 CSCI2340 - Lecture 18 21



Detecting Performance Problems
• User interaction performance
• What users perceive (what you perceive)
• You can get timings (video and look at frames)

• Browser timings for web applications
• Application performance
• Time for specific operations
• System view of CPU, memory, disk I/O

• Multithreaded performance
• % CPU used vs expected (improvement from multiple threads)
• Tools to understand behavior: locking, bottlenecks, …

• Stress testing
• Simulate the load: jmeter and similar tools

10/28/24 CSCI2340 - Lecture 18 22



Creating Performance Test Cases

• Normal test case that takes too long
• Typically, not done as part of test suite
• Can be done to debug the performance problem
• Create a test for this purpose
• Might not be considered part of test suite

• Can have a test case that times out to fail
• But running on a different machine …

• Might be non-deterministic
• You might need to run it a lot of times

10/28/24 CSCI2340 - Lecture 18 23



Performance Analysis Tools
• UNIX / LINUX: prof, gprof
• For C/C++ and native code
• prof gives time & count for each function
• gprof gives these for each function + caller-callee pair

• Get an approximation to why a routine spends its time
• TypeScript
• Chrome DevTools

• Standalone Java tools
• Jprofiler, VisualVM, jconsole
• Dymon

• These provide limited information
• Especially about multithreaded problems

10/28/24 CSCI2340 - Lecture 18 24



DYMON

10/28/24 CSCI2340 - Lecture 18 25



Performance Analysis in IDEs

• Environments typically include one
• VS Code, IntelliJ, (Eclipse TPTP)

• Code Bubbles
• Automatic as part of debugging
• Collects more information than displayed

• Again, these provide limited data
• Especially for multithreaded cases

10/28/24 CSCI2340 - Lecture 18 26



Multithreaded Performance Analysis

• Detecting the state of all the threads
• Running, busy, waiting, I/O

• Detecting what threads are blocking on
• Shared locks, bottlenecks, other threads

• Detecting what threads are doing
• In terms of the program
• Why they are blocked, waiting, or doing I/O

• Problem: multithreaded web crawler would work well for a 
while, but then it would essentially halt for a time before 
continuing 

11/5/24 CSCI2340 - Lecture 18 27



Jive, Jove and Veld

11/5/24 CSCI2340 - Lecture 18 28



Dynamic Visualization in Code Bubbles

11/5/24 CSCI2340 - Lecture 18 29



Code Reviews

• A form of manual testing
• Take a piece of code (method, class, …)
• Have a panel of reviewers
• Pass the code out to the panel (possibly in advance)
• Panel goes over the code line-by-line

• Goal is to find and eliminate all potential bugs
• And make sure the code conforms to various guidelines

10/28/24 CSCI2340 - Lecture 18 30



EXERCISE

• Example code review (codereview.java)

10/28/24 CSCI2340 - Lecture 18 31



Memory Problems
• Memory Leaks occur in Java
• Despite garbage collection
• But are more subtle than in C/C++

• Tools for detecting leaks
• jmap –dump; jhat are standard java tools
• Eclipse memory analysis extensions

• Summary
• Browse through memory

• Dyvise memory data
• Test cases for memory problems
• Especially for recreating them

10/28/24 CSCI2340 - Lecture 18 32



Memory Ownership

• Who is in charge of a particular piece of memory (object)
• Creating it, holding a pointer to it, freeing it
• Making this clear reduces memory problems

• Especially in C/C++ but also in Java and other systems
• In addition to garbage collection

• Ideally this should be clear
• Non-owners shouldn’t save pointers (or should use weak ones in Java)
• Generally handled via documentation & manual techniques
• Requires strong programmer discipline to get right

• Especially with multithreading
• RUST makes it explicit

10/28/24 CSCI2340 - Lecture 18 33



DYMEM

10/28/24 CSCI2340 - Lecture 18 34



PROJECT
• Ensure you have a testing strategy for your project
• Test environment
• Test version
• Include documentation of the strategy in your repository

• Do a code review within your project team
• Choose a complex module within the project
• Point everyone to the code in advance
• Then go over the code line by line to ensure it works
• Submit a summary of your findings in Canvas

• Does any group want to present on 11/26?
• Tell me by next Tuesday

10/28/24 CSCI2340 - Lecture 18 35


