
Static Analysis I
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

10/28/24 CSCI2340 - Lecture 19 1

Programming Assignment

• It should follow naming conventions
• It should follow style conventions
• Formatting, size of methods, …

• It should be readable (block comments, etc.)
• It should include copyright, file headers

• If what you handed in doesn’t do all this
• Revise it and resubmit within the next week.

11/7/24 CSCI2340 - Lecture 19 2

Validation versus Verification
• Validation checks the program
• Testing, code reviews, user experience, …
• Confirmation by examination of objective evidence

• That the program meets its requirements
• Verification
• Proves the program meets its requirements
• Showing it works for all possible inputs
• Showing it works under all possible conditions
• This is what static analysis tries to do

• Verification is needed in safety-critical systems
• Verification is useful in security-critical systems
• Verification is useful in general

10/28/24 CSCI2340 - Lecture 19 3

Goals of Static Analysis
• Demonstrate that the system will work under all conditions
• Can work on a model of the system rather than actual code

• As long as working on model implies working on the system
• Note: not working in the model does not imply not working in the system

• Need to define what ”work” means in a formal sense
• Find potential bugs without running the software
• Considering all possible inputs rather than just samples
• Considering all possible executions

• Checking for potential problems
• Looking at specific problems

• Either general or program-specific
• Seeing if they are present in the code

10/28/24 CSCI2340 - Lecture 19 4

Partial Correctness

• Complete program correctness is difficult
• Would need a complete specification of the program
• For a large, complex system, especially an interactive one

• Writing the specification is more difficult than writing the code
• The specification is as or more error prone than the code

• Solution is partial correctness
• Identify key properties the code should have

• For safety, for security, for operation
• Prove these properties hold in the program

• Under all possible inputs and all possible executions

• Differs from partial correction in program theorem proving
11/7/24 CSCI2340 - Lecture 19 5

Contracts: The Traditional Approach
• Contracts are local formal specifications of program behavior
• Several forms and levels
• Partial specifications (not necessarily complete)
• Developed by Bertrand Meyer in the language Eiffel

• Based on formalisms developed by Dijkstra
• Can be safety conditions or just program conditions

• Three types: Preconditions, Postconditions, Class Contracts
• Precondition contracts
• Specify constraints on the inputs to a method or function

• Argument can’t be null; 0 < value <= 10; …
• These are the assumptions a method makes

• What you might check using defensive coding & documentation
• Preconditions make these assumptions explicit

11/11/24 CSCI2340 - Lecture 19 6

Specifying Preconditions in Java
• Can be done using assert statements
• Placed at the start of a method
• These generate an exception if condition is violated
• But can be ignored (compiler or execution option)

• Can be done using annotations
• com.google.java.contract.* is one example
• @Requires(<boolean expression>) annotation on a method

• Expression has access to the various arguments
• And any other accessible values

• A bit messy since Java annotations apply to types, not methods
• Needs to be checked outside the language

• Similar facilities exist for other languages

11/11/24 CSCI2340 - Lecture 19 7

Postcondition Contracts
• Specify constraints on the outputs of a method or function
• In terms of the inputs and the return value or exception

• Can use its own local variables if needed
• result >= 0; set.contains(input)

• These can be a definition of what the method does
• But generally, are only constraints, not full specifications

• Can be specified using assert
• With assert (…) inserted before any return statement

• Can be specified with annotations
• @Ensures(<condition>)
• @ThrowEnsures(<condition>)

11/11/24 CSCI2340 - Lecture 19 8

Class Contracts
• Specify properties of a class
• Define relationships among fields of the class

• Constraints on the class
• Hold whenever a public or package-protected method returns

• Also, when a constructor returns
• This allows inconsistent states while computing, but that are not exposed
• Requires accurate specification of protection levels

• Can specify usage rules for methods
• But this is non-trivial (need to create automata as part of the check)
• Can introduce contract variables for this purpose

• Can be defined using assert statements
• assert balanced(); assert field != null
• Add this at the end of each appropriate method and constructor

• Call a method to do the check rather than check in place

11/11/24 CSCI2340 - Lecture 19 9

Class Contracts

• Easier to define using annotations
• @Invariant(<condition>) specified once for a class
• But this needs to be checked

11/11/24 CSCI2340 - Lecture 19 10

Checking Class Contracts
• Annotations can be used to generate internal code

• Checked at run time using annotation processing (cofoja: defunct)
• Checked at run time using aspect-oriented programming (Oval; defunct)
• Check at run time using class loader patching (Jass; defunct)

• Can be checked statically with proper framework
• Proving the contract holds under all executions

• Post condition holds given precondition
• Class condition holds whenever a public method returns (assuming pre & post conditions)
• Using theorem proving technology

• Java Modeling Language (JML) did this (defunct)
• C-spec for C# (Microsoft) does this

• Ideally contracts would be compiled in as run time checks by the language
• But annotation processing in Java doesn’t allow this
• Compilers are starting to support some of more useful annotations

11/11/24 CSCI2340 - Lecture 19 11

Discussion
• Contracts seem to be a way of ensuring program behavior

• Relatively easy to specify, non-obtrusive
• Yet they are not widely used.
• WHY?

• Do any of you use them?
• Would you use them if they were available?
• Would you use them for documentation?
• Would you use them if they were checked
• Would you use them if they didn’t cause performance problems?
• Would you prefer them to defensive coding?
• How difficult to you think they are to create?
• How complete do you think they generally are?
• Can they express global properties, safety, security?

11/11/24 CSCI2340 - Lecture 19 12

Safety Condition
• We want to prove the whole system is secure

• With respect to a given condition or property
• Actually, we try to prove the system is not secure

• Define a condition that should not occur
• A violation of safety or security
• The program can cause two trains to crash
• User input can flow to a SQL query
• A user can gain super-user access without authentication

• Prove the program can cause this condition to occur
• The proof then lets you see why the program fails

• Proof effectively creates an example that fails
• Shows how and why the program is unsafe
• Tells you what to fix (can be the program or how the proof was done)

• Failing to prove the system is not safe means the system is safe
• A condition that we use to show the system is not safe

• Is called a SAFETY CONDTION

11/7/24 CSCI2340 - Lecture 19 13

Safety Conditions
• These are used to define the possible problems
• Defining things the program shouldn’t do
• SHORE: allowing two trains to crash
• Writing sensitive data out
• Invoking a SQL query with tainted data
• Executing privileged command without privilege
• Overflowing a buffer

• Ensuring that the system doesn’t do these
• Under any conditions
• Under any possible sequence of inputs
• Under any possible sequence of actions

• Including thread schedules

10/28/24 CSCI2340 - Lecture 19 14

Security Problems as Safety Conditions

• Checking that tainted data doesn’t go to the wrong place
• SQL injection attacks
• XSS attacks
• Credit card numbers not saved
• Secure data remains at the proper security level

• Checking there are no buffer overflow errors
• Checking that assumptions are met
• User authorized as admin to execute admin functionality

10/28/24 CSCI2340 - Lecture 19 15

System Problems as Safety Conditions

•Many correctness properties of a system
• Can be expressed as safety conditions
• Example: transfer of money from one account to another
• Example: hasNext called before next

• Can express the critical system issues
• Can show the system does what it should
• But you need to state the conditions
• These are application specific

10/28/24 CSCI2340 - Lecture 19 16

Safety Conditions in Embedded Systems

• Used extensively in embedded systems
• Often these are critical systems
• With real-world consequences

• Examples:
• SHORE: two trains shouldn’t be in the same block
• PINBALL: the program shouldn’t blow a fuse
• A self-driving car should not crash into a person

• NASA is a big proponent

11/7/24 CSCI2340 - Lecture 19 17

Static Analysis Checks Safety Conditions
• Shows how a safety condition can fail (the program is bad)
• Or shows it can’t and thus can’t be triggered by the program
• When it does fail, it shows how the failure can occur

• To do static analysis effectively we need to simplify
• The condition needs to be stated in formal finite terms
• The program needs to be stated in finite terms

• And tractable (problems solvable)
• This means finite state and small finite variables bounds

• Then we can do a proof
• Either in terms of finite automata
• Or in terms of Boolean formula

11/9/24 CSCI2340 - Lecture 19 18

Büchi Automata
• Safety conditions can be specified using automata

• Over infinite inputs
• Transitions indicated by program events

• Calling or returning from a method
• Variable having a certain value at a given point
• Execution reaching a given point
• Creation of an object

• Transitions indicated by predicates
• Based on program variables

• Safety condition expressed in terms of different states
• Start state indicates initial state of the system
• Error states define states that should not be reached

• Goal: Find a valid series of program events or variable settings
• That puts the system into an error state when started in the start state
• Again, trying to get the system to fail (not show success)

10/28/24 CSCI2340 - Lecture 19 19

Temporal Logical Formulas
• Can also be represented using temporal logic
• Boolean logic
• With additional operators for time

• X eventually occurs
• X always occurs
• X occurs after Y

• Using properties of the program as a base
• Program events, variable values, …

• Roughly equivalent to automata
• Can map back and forth

• Other representations are also used for special cases
• Contracts for local behaviors
• Special structures for escape analysis

10/28/24 CSCI2340 - Lecture 19 20

Representing the Program’s Data
• To check these properties, the program needs to be abstracted out of the code

• Program must be finite state (to allow decidability)
• Essentially an extended finite automata (conditions on transitions)
• Minor extensions (e.g., call-return) are possible, but not simple
• Fixed number of threads if threads are considered

• The program’s data must also be finite
• Integers, doubles, etc. need to be restricted to finite sets

• A few significant values or ranges; then combine all the others (0,1,2, >2)
• Need to do arithmetic with the combined values
• Operations might yield multiple results

• Structures
• Represent as finite graphs (of links)
• Again, with nodes representing an arbitrary graph
• Fixed maximum size for arrays, lists, etc.

• Note these are approximations (generally include all possible cases)
• Up to a point (max size, max threads)

• A lot of this can be automated

10/28/24 CSCI2340 - Lecture 19 21

Representing the Program
• Need to map code to an augmented finite state automata

• States represent program locations
• Can have a set of (finite) values for variables at each location
• Arcs can be conditional on the values

• Generally, just use the control flow graph directly
• Without considering most conditionals
• Program can go either way at a conditional

• Can consider threads and thread interleavings
• State is cross-product of states of individual threads
• This makes the problem more difficult

• Try to make this a conservative approximation
• It includes all possible cases
• If problem doesn’t occur in model, it can’t occur in program

• Most of these mappings can be automated

10/28/24 CSCI2340 - Lecture 19 22

Data-Based Safety Conditions
• Some safety conditions relate to specific data items
• Need to be checked for each logical instance of item
• Separate automata defined for each item

• States relate to states of the data item
• These are equivalent to subtypes

• Subtypes are type qualifiers
• Specify the automata state for the type
• Can be arranged in a lattice

• Changes relate to actions on the data item
• Creation, operations, …

• Examples
• Iterators: Initialized, hasNext available, hasNext none, next Called, error
• SQL Data: SQLuntainted, SQLtainted, SQLfullytainted, Unknown

10/28/24 CSCI2340 - Lecture 19 23

Program-State-Based Safety Conditions

• Other conditions depend on the program overall
• Has the user been authenticated
• Anywhere that authentication is needed

• Is a user authorized for this action
• Authorized at the right level

• Security Level
• Is the users access level >= that of the data

11/7/24 CSCI2340 - Lecture 19 24

Testing Safety Conditions
• You want to ensure safety conditions are never violated
• Actually you want to find a violation of the safety condition
• In the program now or in the future
• Under any possible conditions
• Under all possible executions

• You could add code to check this
• But that code might be buggy or incomplete

• Still might be a good idea: defensive coding
• So even with code, you can’t be sure there are not holes

• Static Analysis tries to be the answer
• Can check a specific property
• Can check it practically for all possible executions and inputs

10/28/24 CSCI2340 - Lecture 19 25

Static Analysis
• Defining the condition(s) to check

• Different approaches are used
• Subtyping (Finite state data models)
• Finite state models (Büchi automata; temporal logic)
• Bounds checking (variable ranges for buffer overflow)
• Condition-specialized structures (e.g., for escape analysis)

• Chosen mainly for convenience
• Based on the safety condition to check
• Based on means for checking that problem

• Static analysis then checks these for all possible
• Inputs and valid program executions
• Possibly assuming a simplified version of the program

• That is a generalization
• One approach that is used here is subtype checking

10/28/24 CSCI2340 - Lecture 19 26

Subtype Checking

• Type checking can catch potential errors
• This is why I encourage using strong typing
• Finer type checking can catch more
• Knowing X is in inches rather than centimeters
• Knowing X may or may not be null
• Knowing X can be tainted

• This can be done by adding subtypes to existing Java types
• Subtype of double-inches
• Subtype of String-nonnull or String-nullable
• Subtype of String-tainted

10/28/24 CSCI2340 - Lecture 19 27

Defining Subtypes
• Subtypes in Java can be defined using type annotations
• @NonNull, @Tainted, @Unit(“inches”)
• Can be applied to the types of fields, arguments, local variables, returns

• Any place a type is specified, can annotate that type with appropriate subtypes
• Need rules for checking and propagating subtypes
• Assigning null to a @NonNull variable is an error
• Passing inches to a method wanting centimeters is an error
• Concatenating tainted data with untainted data yields tainted data
• Inches * inches = inches2; inches*scaler = inches
• Writing tainted data to a file is an error

• These must be defined for each subtype and operator
• But in general, the rules follow a hierarchy for the subtype

• Thus, the specification can be simplified and practical

10/28/24 CSCI2340 - Lecture 19 28

Subtypes for Security Checking

•@SqlTainted
• Whether data is tainted with respect to SQL injection

•@HtmlTainted
• Whether data is tainted with respect to XSS

•@FileTainted
• Is the file name tainted to give outside access

•@Initialized
• Has this data been initialized

11/7/24 CSCI2340 - Lecture 19 29

Subtype Checking Tools
• Tools exist for checking these subtypes

• Using type-checking technology
• Checker system

• Available as a plug-in for IDEs or standalone
• Runs in batch mode

• Checking is done statically
• Check all assignments (explicit and implicit)
• Types are propagated inside a method

• Checking defines the target subtype at each program point
• Types are not propagated between methods, but are checked at each boundary

• Method call, return value

• Errors
• No errors detected says program is correct with respect to annotations
• Errors detected says program might be wrong

• And type checking yields the execution sequence yielding the error
• Again, this is an approximation since type combinations might not be possible

10/28/24 CSCI2340 - Lecture 19 30

Using Checker
• More difficult than it looks

• All intermediate values need to be subtyped correctly
• Types must be defined at each boundary (method definition and call)
• Can require a lot of annotations
• Will miss some things (e.g., common routines)

• Requires understanding and annotating collections
• Saying that no value in a collection is null
• Saying that access to a map will return something non-null

• That this variable holds a valid key – there’s an annotation for that
• But this requires adding a lot more annotations

• Requires annotating third-party libraries
• Java standard library is annotated by Checker
• But systems often use other libraries as well

• Only checks source code, not binaries
• Nice framework, not that widely used

10/28/24 CSCI2340 - Lecture 19 31

Null Checking

• Checking for nulls is an important instance
• Prevents potential NullPointerExceptions
• Can be quite useful

• Today’s compilers try to do this
• But there are usually too many false positives

• In constructors and routines called by constructors
• When using collections
• Based on library routines

• Also, tools like FindBugs try to do this
• Again, with lots of potential false positives

• Can also be done using Checker with lots of annotations

10/28/24 CSCI2340 - Lecture 19 32

Null Checking in the Compiler & FindBugs

• Rather than checking everywhere
• Only check where it can implicitly be null
• After the user has checked for null
• After the value has been set to null and not reset on all paths

• This can have a lot of false negatives
• This can be augmented with @NonNull, @Nullable
• To get more accurate results
• But these aren’t necessarily supported by the compiler

• Or by building null checking into the language
• DART: type system includes nullable/non-null explicitly

10/28/24 CSCI2340 - Lecture 19 33

Null Safety in Dart
• Dart includes nullability in types system

• Either absolute
• Or settable in the constructor

• And operators that handle null values automatically
• With well-defined semantics

• This solves many problems
• Catches potential errors
• Forces user to think about null values

• But not all problems
• Delayed initializations can still cause problems
• Programmers get lazy and declare values as nullable
• Compiler check based on conditionals not perfect
• You should still except come errors

11/7/24 CSCI2340 - Lecture 19 34

Next Time

• Other approaches to safety checking
• Abstract interpretation
• Using data flow analysis to simulate a high-level execution
• Looking at all possible inputs and executions

•Model Checking
• Mapping the safety condition and the program to finite automata
• Developing a formula stating the safety condition fails
• Proving that this formula is true to find counterexample
• Or prove there is no counterexample

10/28/24 CSCI2340 - Lecture 19 35

Homework

• Think about what can go wrong with your project
• That you want to ensure the code doesn’t do
• What are the potential problems
• Safety, security, or operational

• What are the critical aspects of your software
• How would you show your software works

• List one safety condition for you project
• Submit to canvas
• Due Thursday 11/14

10/28/24 CSCI2340 - Lecture 20 36

PROJECT
• Did any project want to present on 11/26?
• We will have 3½ classes devoted to project presentations
• (11/26), 12/3, 12/5, 12/10, (12/12)
• Each team gets <=40 minutes (half a class)
• Last class: 12/12 can be used for final demo (<=10 minutes)

• Presentation
• Requirements, specifications, design, implementation

• Live demo or video (if possible; canned demo otherwise)
• This can be saved for the last class, but would be nice to see current state

• Possible plans for maintenance and evolution
• Where is the project going after the class is over

• Experience: What you learned, what you should have done better
• Questions from the audience

10/28/24 CSCI2340 - Lecture 19 37

Copyright

• You should have a copyright notice at the top of each file
• With an appropriate license
• Or “All Rights Reserved”
• Even for programming assignments

• In addition to your name and year
• Should be the same throughout the project
• Be aware of copyright on anything you use
• Include in source if you borrowed code
• And copyleft (GPL)

• Should be below block comment for the file
11/11/24 CSCI2340 - Lecture 19 38

Subtypes for a Type Form a Lattice

10/28/24 CSCI2340 - Lecture 19 39

