Validate or I'll smash you!

Our goal this year is
to find and fix as

How many
errors do
you need?

many functional
specification errors
as possible...

|£OIIOMM

Verification

www.feedforall.com

Choosing a formal method can be a fearful thing.

Programming Assignment

* It should follow naming conventions

* It should follow style conventions
* Formatting, size of methods, ...

* It should be readable (block comm
* It should include copyright, fi

* If what you hand
* Revise it a

11/7/24

Validation versus Verification

* Validation checks the program

* Testing, code reviews, user experience, ...
* Confirmation by examination of objective evider
* That the program meets its requirements

* Verification
* Proves the program meets its rec
* Showing it works for all possik

* Showing it works under
* This is what static an

e \Verification is

Validation Verification

Goals of Static Analysis

* Demonstrate that the system will wo

* Can work on a model of the syste
* As long as working on model impli
* Note: not working in the moc

* Need to define what ”

* Find potential bug

SYSTEM
MODEL

Partial Correctness o o

SYSTEM

COUNTER
EXAMPLE

 Complete program correctness is difficult

* Would need a complete specification of the progr
* For a large, complex system, especially an int

* Writing the specification is more difficult th
* The specification is as or more error pr

* Solution is partial correctnes
* |dentify key properties t
* For safety, for securi

* Prove these pro
e Under al

e Differs

Contracts: The Traditional Approach

e Contracts are local formal specifications of program behavior
e Several forms and levels
 Partial specifications (not necessarily complete)

* Developed by Bertrand Meyer in the language Eiffel
* Based on formalisms developed by Dijkstra
» Can be safety conditions or just program conditi

* Three types: Preconditions, Postcondition

* Precondition contracts o et
* Specify constraints on the inputs side effects || errors/exceptions

* Argument can’t be null; 0 <
* These are the assumptic

* What you might ch
* Preconditions n

preconditions

postconditions

output values

11/11/24

Precondition Example

Specifying Preconditions in Java

* Can be done using assert statements
* Placed at the start of a method
* These generate an exception if condition is
e But can be ignored (compiler or executi

* Can be done using annotations
e com.google.java.contract.™ i

 @Requires(<boolean ex
e Expression has acce
* And any other

* A bit messy

aaaaaaaaaaaaaaaaaaaaaaaaaa

Postcondition Contracts

* Specify constraints on the outputs of a me

* In terms of the inputs and the return val
e Can use its own local variables if needec

* result >= 0; set.contains(input)

* These can be a definition of
e But generally, are only «

* Can be specified

«localPrecondition»

A drnk 15 selected that
the vending machine contans and
the correct payment 1s made.

«localPostcondition» k
The vending machine dispensed

the drink that 1s selected and

correct change 1s provided.

Ultimate Guide

Class Contracts b G

Management:
Benefits & Best
Practices

 Specify properties of a class
» Define relationships among fields of the class
e Constraints on the class

* Hold whenever a public or package-protecte
* Also, when a constructor returns
* This allows inconsistent states while co
* Requires accurate specification of p
e Can specify usage rules for m
* But this is non-trivial (nee
e Can introduce contra

 Can be defined usi
e assert bala

Class Contracts

 Easier to define using anr
* @Invariant(<conditi
* But this need

vmware

Closure annotation

[@Retention(RetentionPolicy. RUNTIME)
@interface Invariant {

Class value{) // a closure class
)

@Invariant({ number >= 0))
class Distance {

float number

String unit
|

def d = new Distance{number: 10, unit: "meters”)
def anno = Distance getAnnotation(invariant)
def check = anno.value().newlnstance(d, d)
assert check(d)

Design by Contract

* Design-by-Contract

* Specification of class invariants and pre and post

Checking Class Contracts -

* Assertive programming

* Use of assertions inside methods.

+ Test-driven development

* Annotations can be used to generate internal code
* Checked at run time using annotation processing (cofoja: defu
* Checked at run time using aspect-oriented programming
* Check at run time using class loader patching (Jass; d

e Can be checked statically with proper frame

* Proving the contract holds under all executi
* Post condition holds given precondition
* Class condition holds whenever a
* Using theorem proving techno
* Java Modeling Language
e C-spec for C# (Micros

Discussion

* Contracts seem to be a way of ensuring program behavior

* Yet
 WH

11/11/24

Relatively easy to specify, non-obtrusive
they are not widely used.

Y?
Do any of you use them?

Would you use them if they were available?
Would you use them for documentation?
Would you use them if they were ch
Would you use them if they didn’
Would you prefer them to
How difficult to you thi
How complete do
Can they expr

> Describing security
properties

Enforcement of
security properties

> = = 55 e 7\\‘\ " ‘"
5 Y o Security issues - Security Monitoring
R ¢ A faced by CSPs
bam N) .
l‘_ P 4 %

. 4 Efficiency of Security
Common
issues

Safety Condition &

Service selection)

Assessment Technique

B Sccunty Effectiveness

Transparency

We want to prove the whole system is secure
e With respect to a given condition or property

Elicitation of Security
Requirements

Operational Security
Assurance

Prionitization of
Security Requirements

Actually, we try to prove the system is not secure S—r——
* Define a condition that should not occur

. . . N Cloud Heterogeneity]
* Aviolation of safety or security

* The program can cause two trains to crash
* User input can flow to a SQL query
e A user can gain super-user acce

* Prove the program can ca

The proof then lets yo

* Proof effective
* Shows h

Cloud Complexity

SAFETY CONDTION

o T

* Defining things the program shouldn’t do

STREETDRONE)

DEFINING THE CONDITIONS
FOR AUTONOMY <)

[] []
StreetDrone have a proprietary approach to comprehensively —
defining the scope of autonomous vehicle trials - starting ‘
and finishing with safety

Operational Design Domain (ODD): Vehicle Design Domain (VDD):
The conditions under which a The vehicle specification to meet the
StreetDrone vehicle can operate requirements of the operating conditions
autonomously

We work with our customers to define the
trial environment and conditions; for
instance, which road features are present
such as traffic lights or roundabouts?
What hazards are present such as
pedestrians or cyclists? In addition, we
add environmental parameters - do we
operate in the rain and what are the
route speed limits?

hese are used to define the possible problems

The software modules are then selected
to suit the particular autonomous purpose
of the trial- this can include dynamic path
planning, object avoidance, pedestrian
behaviour prediction and more

 SHORE: allowing two trains to crash

e Writing sensitive data out

Invoking a SQL query with tainted data

* Executing privileged command without pri
Overflowing a buffer

nsuring that the system doesr
* Under any conditions
* Under any possible seo

* Under any possible
* Including thre

software functionality you want to operate
with, we can define the hardware
requirements for the vehicle. This covers
all considerations from computational
power to the required sensor sets

The ODD and VDD, once defined, form
the functional specification for your
StreetDrone autonomous vehicle - what it
can do and where it can go

Vv
I
|
|
I
\ 4
|
|
|
|
Once we know the ODD features and
v
|
I
I
I
v
’ !

I Safety driver training is the next essential
step to safe deployment of autonomous
v vehicles. When anything occurs (weather
changes, dynamic objects, etc) outside
I your ODD and VDD conditions, the safety
I driver will take control of the vehicle

Wi STREETDRONE
ith all these steps complete, a thorough
safety case can be written for an DEPLOYMENT

autonomous vehicle trial or
demonstration!

www.streetdrone.com

10/28/24

Security Problems as Safety Condition

* Checking that tainted data doesn’t go to the v
e SQL injection attacks
XSS attacks

e Credit card numbers not saved //> i AVOIDING THE : gy
, N/ TOP 10 R
e Secure data remains at the “&~ SOFTWARE

BECURITY

= ChECklng there are n : . DESIGN FLAWS

* Checking tha

System Problems as Safety Conditi

* Many correctness properties of a s
* Can be expressed as safety conditi
* Example: transfer of money f
* Example: hasNext calle

* Can express the c
e Can show

Safety Conditions in Embedded Systenr

* Used extensively in embedded systems

e Often these are critical systems
* With real-world consequences

* Examples:
 SHORE: two trains sho
* PINBALL: the prog
* A self-driving
* NASA is

Static Analysis Checks Safety Conditio

* Shows how a safety condition can fail (the program is k&

* Or shows it can’t and thus can’t be triggered by the prog
* When it does fail, it shows how the failure can occ

* To do static analysis effectively we need tc
* The condition needs to be stated in form

* The program needs to be stated in fi

* And tractable (problems solvable
* This means finite state and sm

* Then we can do a proc
e Either in terms of fi
* Orinterms of E

taint checking

R R \ ')
8.4 :

data-flow analysis J symbolic execution

BUchi Automata

» Safety conditions can be specified using automata
e Over infinite inputs
* Transitions indicated by program events
* Calling or returning from a method
* Variable having a certain value at a given point
* Execution reaching a given point
* Creation of an object
Transitions indicated by predi
* Based on program variable
Safety condition expre
Start state indica
Error states o

Goal: Fino

aloginAlogout

Temporal Logical Formulas

Can also be represented using temporal logi

Boolean logic

* With additional operators for ti
» X eventually occurs
* X always occurs
e Xoccurs afterY

* Using propertles of

Operator

Meaning

globally / forever / always

next

finally / sometimes

Example

Gp
formula p is true forever
(that is in all states)

Xp

formula p is true in the next stat
Fp

formula p is true finally

(that is in some states)

Representing the Program’s Data

* To check these properties, the program needs to be abstracted out of the code
Program must be finite state (to allow decidability)

Essentially an extended finite automata (conditions on transitions)
Minor extensions (e.g., call-return) are possible, but not simple
Fixed number of threads if threads are considered

e The program’s data must also be finite

Integers, doubles, etc. need to be restricted to finite sets
* A few significant values or ranges; then combine all the others (0,1
* Need to do arithmetic with the combined values

* Note these are approximations

* A lot of this can be @

* Operations might yield multiple results
Structures
* Represent as finite graphs (of links)

* Again, with nodes representing an arbit

* Fixed maximum size for arrays, list

Up to a point (max size, ir

-
=

Leal Python

Representing the Program

Need to map code to an augmented finite state auto
 States represent program locations
* Can have a set of (finite) values for variables a
* Arcs can be conditional on the values

Generally, just use the control flow g
* Without considering most condi
* Program can go either wa

Can consider threads g
* State is cross-f

Data-Based Safety Conditions

* Some safety conditions relate to specific d
* Need to be checked for each logical instz

e Separate automata defined for each i
» States relate to states of the data i
* These are equivalent to sub
* Subtypes are type quali
» Specify the autome
e Can be arrange

* Changes re

Program-State-Based Safety Conditions

* Other conditions depend on the program overall

e Has the user been authenticated
 Anywhere that authentication is needed

Authentication and Authorization

* Is a user authorized for this action =

uuuuuuuuuuuuuuuuuuuuu

* Authorized at the right level | —_—

 Security Level
* |s the users access level >=

CSCI2340 - Lecture 19

Testing Safety Conditions

* You want to ensure safety conditions are never violatec
* Actually you want to find a violation of the safety conditi
* |n the program now or in the future
* Under any possible conditions SAFETY
* Under all possible executions FIRST

o - REPORT ALL
You could add code to check this OHEAFE CONDITIONE
* But that code might be buggy or | TO YOUR SUPERVISOR

* Still might be a good idea: def
e So even with code, you c
e Static Analysis tri
* Can check a sg
e Can che

10/28/24

Source Model Intermediate Analysis Results
Code Extraction Repres(?R)tations

Static Analysis c—n-ll-o

Names Databases/Symbol Table Abstract Syntax Tree (AST) Control Flow graph (CFG)

. .
* Defining the condition(s) to check === $ 2 $.o
* Different approaches are used L= L .
* Subtyping (Finite state data models) *
* Finite state models (Blichi automata; temporal logic)
* Bounds checking (variable ranges for buffer overflo
e Condition-specialized structures (e.g., for escap
* Chosen mainly for convenience
» Based on the safety condition to chec
* Based on means for checking th

* Static analysis then checks

* Inputs and valid progr
* Possibly assumin
 Thatisa

P::=(L, t, FM) CFJ program (SPL)
L ::=class C extends C{Cf; K M} class decl.
K ::=C(C f) { super(f); this.f=f; } constructor decl.
M::=C m(C x) { return t; } method decl.

Subtype Checking o

t.f field access
t.m(t) method invocation
new C(t) object creation

(Ot cast

* Type checking can catch potential errors
* This is why | encourage using strong typi

* Finer type checking can catch more
 Knowing X is in inches rather th

* Knowing X may or may nc
* Knowing X can be tair
* This can be done
e Subtype ¢
e Sub

Defining Subtypes

* Subtypes in Java can be defined using type annotations
« @NonNull, @Tainted, @Unit(“inches”)

e Can be applied to the types of fields, argumen
* Any place a type is specified, can annotate that t

* Need rules for checking and propagati
* Assigning null to a @NonNull vari
e Passing inches to a method v
* Concatenating tainted d
* Inches * inches =i
* Writing tainted c

e These mus
e Butin

Subtypes for Security Checking

* @SqlTainted
 Whether data is tainted with respec

e @HtmMITainted
 Whether data is taintec

e @FileTainted
* |s the file nar

CHECKER

fromework

Subtype Checking Tools

Type
Tools

Tools exist for checking these subtypes
* Using type-checking technology

Checker system
* Available as a plug-in for IDEs or standalone
* Runs in batch mode

Checking is done statically
* Check all assignments (explicit and implicit)

* Types are propagated inside a method
* Checking defines the target subtype at eac

* Types are not propagated between
* Method call, return value

Errors
* No errors detected s
* Errors detected

Using Checker

:\Njavaexamples\checkers>javachecker —processor checkers.nullness.NullnessCheck

er —d classes srci\dustin\examples*.java
src\dustin\examples\CheckersDemo. java:17: error: incompatible types in argument.

me . printNonNullToString(EuIIStr) H

found : @GNullable String
required: ENonNull Obhject
error

:\Njava\examples\checkers>

All intermediate values need to be subtyped correctly

* Types must be defined at each boundary (method definition and call)

* Canrequire a lot of annotations

* Will miss some things (e.g., common routines)

e Saying that no value in a collection is null

Requires understanding and annotating collections

* Saying that access to a map will return something non-null
* That this variable holds a valid key — there’s an annotation for that
e But this requires adding a lot more annotations

Requires annotating third-party libraries

e Java standard library is annotated by Checker
* But systems often use other libraries as well

Only checks source code, not binaries
* Nice framework, not that widely used

Null Checking

* Checking for nulls is an important instance

* Prevents potential NullPointerExceptions
* Can be quite useful

* Today’s compilers try to do thi

e But there are usually too r
* In constructors and rc
* When using co
* Based on li

* Also, toc

Null Checking in the Compller & FmdB O

pu bl 1
p at Engin
public (’ e engine) {

if (g 1 {
% ntin otormyst not be null!™);

* Rather than checking everywhere ot g i

* Only check where it can implicitly be null
o After the user has checked for null
e After the value has been set to null anc

* This can have a lot of false negs

* This can be augmented v
* To get more accurate
* But these aren’

* Or by buildi
* DAR

@NothNull

public Engine getEngine() {
return engine;

}

¥

Null Safety in Dart

* Dart includes nullability in types system
e Either absolute
* Or settable in the constructor

* And operators that handle
* With well-defined semz

* This solves many p Object?

* Catches pote O\

+ Forces us
/\
! <~ O\

T L

Next Time

* Other approaches to safety checking

* Using data flow analysis to simulate a high-level execution
* Looking at all possible inputs and executions

* Model Checking

* Mapping the safety condition and the program to finite automata
* Developing a formula stating the safety condition fails

* Proving that this formula is true to find counterexample
* Or prove there is no counterexample

Homework

* Think about what can go wrong with your project
* That you want to ensure the code doesn’t do

* What are the potential problems
 Safety, security, or operational

* What are the critical aspects of
* How would you show your

* List one safety conditi

10/28/24

PROJECT

* Did any project want to present on 11/267?

* We will have 3% classes devoted to project presentations
* (11/26), 12/3, 12/5, 12/10, (12/12)
e Each team gets <=40 minutes (half a class)
e Last class: 12/12 can be used for final demo (<=10

* Presentation
* Requirements, specifications, design, i

* Live demo or video (if possible; canne

* This can be saved for the last clas

* Possible plans for maintena

* Where is the project goi

* Experience: What

e Questions fro

10/28/24

Copyright

* You should have a copyright notice at the top of eac

* Wlth an approprlate Ilcense The Amount of Rights that Users Have
* Or “All Rights Reserved”

* Even for programming assignments
* |n addition to your name and year
* Should be the same throughao

* Be aware of copyright or
* Include in source i
* And copyleft

* Should be

11/11/24

Subtypes for a Type Forr

BInitiazlizedFields ()

el RInitializedFields("a")||@Initializedfields("b")

nterned Obje

EInternedlistinct Object @Interned Date @Initializedfields({"a", "b"})

