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Type Checking Requires Work
• Type checking doesn’t take flow of control into account

• Considers the declared type, not the actual types
• Routine without a declaration can return NULL, even if it wouldn’t
• Doesn’t know what actual types might occur a a given point

• Methods use their declared type, not what is effectively passed in
• Need to annotate all intermediate methods and local declarations to make it work

• And there can be a lot of them

• Want to understand the actual types occurring in execution
• And the actual subtypes
• More precise than the declared types
• This provides more accurate analysis
• With many fewer annotations

• Also want to track program states
• Properties that aren’t data-specific
• More general safety conditions
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Beyond Type Checking
• Check data-oriented properties without all the annotations

• Annotate only source and sink
• Check program-oriented properties

• That aren’t related to a type
• Approaches exist

• Using Data Flow Analysis to propagate the properties
• Running a model of the program with symbolic values

• Using Model Checking to validate a safety property
• Map program to an automata to a temporal logic predicate showing next state
• Map safety condition to an automata to a temporal logic formula
• Create a formula that says the program can enter an error state
• Prove that formula is correct

• Specialized approaches for specific properties (e.g., thread safety) also exist
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Data Flow Analysis: A More General Solution
• Determines what code can be reached

• And what code orderings are possible
• Considers different calling situations

• Determines what values that can reach each point
• Value is an abstract representation of program data

• Specific type & subtype and finite value representation
• Tracked for all instances: stack, local variables, fields, globals
• Values can then represent types (since they are typed)

• Actual types, not declared types
• Does implicit type checking

• Without having to specify the intermediate constraints
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Data Flow Analysis
• Can be used to check state-based safety conditions

• Associate set of safety condition states with each program point
• Propagate these through the execution

• Changing states based on potential program events
• Any point with an associated error state represents a potential error

• Can be used to check data-based safety conditions
• Associate data states (subtypes) with each data element

• Extend the notion of type to include base type plus subtypes
• Propagate these through the execution

• Computing and adjusting types and subtypes appropriately
• Determine when data is used in an incorrect manner – subtypes conflict

• Can be used for more sophisticated checks
• Tracking integer values (constraints), string lengths and contents
• Check for buffer overflows, possible exceptions, invalid URLs and regular expressions, …

• Still limited
• It is an approximation – program and values are modeled, not exact
• Checking for null violations is still difficult
• Doesn’t handle thread interleaving or locking (but handles threading)
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Sensitivity Levels of Data Flow Analysis
• Path-sensitive

• Consider each different program path separately
• First time through a loop versus 2nd time, …

• More accurate, but can get very expensive (recall path coverage)

• Flow-sensitive
• Consider control flow within a method
• But merge states when control flow comes together

• Flow-insensitive
• Just look at all possible computations done in the method

• In any order and without considering conditions, etc.
• Much less expensive

• Useful for some analyses
• Too imprecise for safety condition checking

• Context-sensitive
• Consider different call sites for methods as different methods
• Otherwise merge inputs to a method; pass merged outputs back to each call site
• Can also have partial context sensitivity
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Precision & Accuracy
• A flow analysis is precise if 

• Every possible execution is included in the flow analysis
• The analysis covers all executions and then some

• A precise analysis guarantees
• If it shows there is no problem, the program is safe
• If it shows a problem, the program MAY not be safe

• A flow analysis is accurate if
• An error found in the analysis indicates an error in the program
• But no errors in the analysis does not indicate the program is safe
• Much more difficult to achieve, much less useful

• You want both accuracy and precision
• Precision is probably more important
• But there are tradeoffs between them
• And both tradeoff with efficiency
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Compiler Data Flow Analysis
• Data flow analysis is used for compiler optimization

• For specific properties
• What variables are alive (will be used) at a program point
• What definitions reach a given program point
• What expressions are available
• What values are constants

• Fix set of bits indicating yes or no
• Bit sets are propagated and computed over the flow graph

• Over a graph of basic blocks and their connections
• Using relatively simple Boolean formulas (union, intersection)

• Very efficient computation of information needed
• In terms of both time and space

• But this doesn’t help with types & subtypes & program properties
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Abstract Interpretation

• Abstract interpretation based flow analysis
• Simulate program execution
• Using a finite state version of the program
• Starting at all possible starting points

• Main programs; test cases; …

• Using abstract values rather than actual ones
• Abstract value: data type with subtypes, source, constraints, subvalues
• Simplified (finite) versions of data as discussed in prior lecture 

• With type and subtype information

• Keeping track of program states for general safety properties
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Abstract Execution Uses a Finite Program 
• Calls are not call-return

• Each method/function has its own execution model
• Call merges call arguments into parameter values for called model
• Called models are handled independently
• Return value of called routine used at call site

• Conditionals can take multiple branches
• Based on what is known about values
• Nondeterministic finite state automata

• Associate values with each instruction 
• Values are finite but are always increasing
• Control flow meeting points merge values
• Need to reevaluate instructions when values change

• The result is effectively a finite state automata
• With a finite set of values, evaluation will terminate
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Execution and Sensitivity

• How to interpret code depends on flow sensitivity
• Multiple instances of a function -> context sensitive

• Generally, a separate instance for each call site
• Single instance of a function -> context insensitive
• Consider flow inside a function ->  flow sensitive

• Otherwise, assume all statements are executed in any order
• Flow insensitive is useful for some analyses, not in general

• Multiple instances of a statement -> path sensitive
• Note that all of these keep the process finite

• And hence all ensure the analysis will terminate
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Program Points
• Abstract interpretation effectively executes the program

• Looking at the effect of each instruction if assembler/byte code
• Interpreting source code at the instruction level

• This can be done using the abstract syntax tree
• Think of an ordered AST visitation as program instructions

• Enter a node
• Return to a node after each individual child

• Dotted AST node (Node plus location in the visitation)
• These are program points 

• Exact set determined by sensitivity
• But the set is finite

• Associate values with each program point
• Finite set of finite values
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Values in Flow Analysis
• Typed Data: finite representations of data

• With type and subtype information
• For numbers, can indicate a particular value, value set, range, range set, ANY

• Kept to a small number of items for each value
• For strings, a particular value, value set, length range, ANY
• For objects, keep a set of entities representing possible objects

• Each creation site (new for example) has its own entity (finite number of these)
• Generic entity for unknown sources
• Each entity can have field values (which are typed data)
• And array entities can have indexed values (which are typed data)

• ANY values let flow analysis consider all possible inputs

• Each program point has a collection of possible values
• Values accessible at that point (local variables, stack)
• Global values are kept globally but can be accessed at any program point
• Can keep track of fields that are set locally and then accessed (not necessarily accurate)
• Overall precision of the flow analysis depends on value representations

• Need to define how values are changed by program operations
• This is the nitty-gritty of abstract interpretation
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Values Stored for Program Points
• Start of a Method:

• Value of parameters
• Return value (merged)
• Avoid reinterpretiation if no changes

• Program point:
• Instruction, Dotted AST node
• Contents of local variables, stack
• (Contents of fields stored locally)

• Objects:
• Contents of various fields
• Contents of array elements (by index and globally)

• Global:
• Contents of global (static) variables: single value
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Operations on Values
• Merging two values

• This is the most common operation
• Needed at all flow merge points
• Needed for global & field assignments
• Needed for merging call arguments
• Needed for merging return values

• Based on operators in the language
• Assignments
• Integer operations
• String operations
• Stack operations
• Accessors (field & index)
• Casts (implicit and explicit)

• Individual methods might be special
• Sanitize, MD5 hashing can change subtype states
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Practical Abstract Interpretation
• Need an efficient representation of values

• Tradeoff between precision and performance
• Since representation needs to be small and finite

• Need an effective way of doing the interpretation
• Knowing when to create a new instance of a routine (context sensitive)
• Minimizing the reinterpretation of states

• If merge doesn’t change values, then no need to reinterpret
• Tradeoff between precision and performance

• Need to handle the quirks of the language
• Exceptions, callbacks from system methods
• Reflection, native methods

• Need to make things efficient
• To make this practical
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Efficient Abstract Interpretation
• Use a work queue algorithm

• Start with program starting points (main, tests, …)
• Create dummy code to execute tests, static initializers, …

• Given a program point with its values
• Determine the set of next possible program points
• And the possible values there

• Stack, local variables

• Merge values as appropriate
• From original values saved for that program point

• Or just use the new values if the point was never executed
• If anything changes or a new point, queue that program point
• Try to queue alternatives in a logical order to minimize reevaluation

• Continue until nothing changes
• Everything is finite; values only grow; this is guaranteed to terminate
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Flow Analysis Errors
• Detected error indicates a possible program error

• Conflict between expected and actual subtypes
• Using annotations to define expected subtypes

• Error program state reached
• After some program state event-based transition

• Can be wrong (like lint) since it is an approximation
• The abstract execution might not be possible in the real program

• Saved state information can provide program path leading to error
• This is the counter-example we desire
• It produces a graph of possible counter-examples
• User can go through and determine which if any of these is really possible

• No errors found show the program is safe
• Assuming the analysis is accurate
• But false positives can be reasonably common (depends on property)

• Accuracy
• Lack of accuracy can yield false negatives (safe when program isn’t)
• One tries to avoid inaccuracy for safety conditions
• But a little inaccuracy is probably okay for immediate feedback
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Abstract Interpretation Difficulties
• This sounds straightforward, but:

• Real programming languages and real programs are not that simple
• Need to handle real programs and their complications

• Java: handling reflection, native methods, initializations, etc.
• Handling call backs from system routines

• Swing/AWT event loop itself is hidden

• Handling exceptions (especially run time exceptions)
• Thrown exceptions are relatively easy
• Considering all potential run time exceptions is expensive & not very helpful

• Handling test cases (in addition to the main program)
• With the various @Before ... annotations

• Handling implicit calls
• Static initializers, boxing and unboxing, lambdas
• Calls to Thread.start imply invoking Thread.run()

• Tracking program state & subtype changes
• Making it efficient enough to work as the user types
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Flow Analysis Tools

• Quite a few exist
• Mainly for fixed sets of properties

• Optimized for those properties
• Generally, these run in batch mode
• And can take hours or days to run on something complex

• Examples
• Amandroid for android checking 
• Commercial tools (C++): coverty, parasoft, understand, veracode, …
• Often run with major check-ins, before releases

• Our Goal: Immediate feedback on safety errors
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Immediate Feedback
• A lot of things are still done in batch

• Compilation
• Testing
• Checker type checking
• Checkstyle
• Automatic bug repair

• I believe they would all be more effective if done immediately
• Provide feedback as the developer types
• Compiler feedback in todays IDEs shows this

• My research goal continues to be to find ways to achieve this
• Continuous testing: not that useful since tests take too long and interact
• ROSE for automatic bug repair while you debug
• Code Bubbles checkstyle plugin to check as you edit
• And abstract interpretation for checking safety properties as you edit

• Fast data flow analysis has other applications as well
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Safety Checking as you Program
• Goal: Show the state of safety conditions in real time

• As the programmer writes or edits the code
• Show problems to the programmer in the IDE

• This is the goal of our FAIT project
• Runs in conjunction with Code Bubbles 
• Provides error indications at safety violations
• Provides information on why this is a safety violation

• Graph of paths leading to the violation
• Provides other information

• Backwards slice of a variable
• Useful for other tools

• ROSE uses it to do fault localization
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FAIT: Efficient Flow Analysis in an IDE
• Making it efficient and complete

• Handle all the Java complexities such as reflection with some user input (via a resource file)
• Special handling collections, maps, string buffers
• Ignoring methods that do not matter with respect to the condition(s)

• Based on user input in a resource file
• Using unique immutable objects for efficient entity and value representations

• Making it concurrent
• For much faster flow analysis
• Work queue of methods to work on; work queue of locations in the method
• Separate threads can work on separate methods simultaneously with little synchronization

• Making it incremental
• To update as the user types
• Detect what might have changed, mark those as invalid, add to work queues

• Handling both source and binary files simultaneously – parallel interpreters
• Source for files being edited (needed to avoid continual save and compile)
• Binary for everything else

• Tries to be both accurate and precise while being efficient
• User input on what is important; what values to consider; what should be context sensitive
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Code Bubbles FAIT Analyzer
• Runs as part of the environment

• Updates anytime there are no compiler errors
• Can’t execute when there are errors

• Provides immediate feedback
• Typically, in under a second, with initial analysis in under a minute

• Requires the user to define subtypes and safety conditions
• What they want to have checked

• This varies from one system to another
• Some basic ones predefined (Tainted data for SQL injection & XSS, for example)

• Subtypes
• Various states, rules for computation; again, some basic ones predefined

• Safety conditions
• Various states, program events, rules for changing state based on event
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FAIT in Code Bubbles
• Requires some annotation of the code

• Using Java type annotations 
• Either direct or indirect (in resource file)

• Using preannotated library routines (from resource file)
• Source and sink annotations required for type checking

• But not the intermediate values as Checker would require
• Standard ones (e.g., Spring html server, Java html server) are predefined
• Or can call dummy function (e.g., KarmaUtils.taint(data))

• Calls to dummy function indicate state-based events
• KarmaUtils.event(“event”)

• Requires additional information from a resource file
• How to handle reflection, native methods

• Reflection only in cases where the class is never instantiated otherwise
• Most standard library native methods are taken care of

• Note special case methods (e.g., those that never return)
• What methods can be ignored (for better performance)

• Or whole classes or whole packages

• Current Research on user interface to define and edit the resource file
• This is a difficult user interface problem
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FAIT in Code Bubbles
• Reasonably precise for most safety conditions

• But this varies with complexity of the code 
• And how complex one allows values to become (ranges and constraints)
• Doesn’t detect multithreading errors (e.g., deadlocks and race conditions)

• Doesn’t consider locks in general
• Graphs let user explore output; resource files let user adjust program to achieve more precision

• Mostly accurate, but accuracy not guaranteed
• Performance, reflection annotations, native code

• User descriptions of these in resource files might introduce errors
• Doesn’t consider all possible run time exceptions

• Fast enough to be useful
• Updates whenever code is error free
• Presents current errors to user
• Can be queried in real time 

• Provide a back slice of how a value might be set from the editor
• Provide information to ROSE on possible locations leading to a fault
• Provide a trace of how an error might have occurred
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FAIT in Code Bubbles
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Model Checking

• Abstract interpretation is limited
• Doesn’t consider interleaving executions
• Doesn’t consider external events
• Doesn’t consider locking
• Doesn’t consider the external world

• Model Checking is a more general approach
• Designed to handle interactions with the external world
• Designed to handle thread-based interleaving
• Can handle locking
• Used extensively for embedded systems
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Model Checking

• Originally created for checking hardware
• Small number of internal states
• Hardware is inherently finite

• Then used for checking embedded systems
• Embedded code is usually relatively simple

• And usually modeled or written as a finite state automata
• Interactions with the real world are important
• These are often safety-critical (e.g., pinball fuses; train crashes)

• Then use to check arbitrary software systems
• Checking individual safety conditions in a program
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Model Checking
• Can be done in terms of automata

• One automata for program, one for safety condition
• Find all possible pairs of states 

• Run the two automata in step (cross-product)
• Events from program automata drive condition automata
• Outside events can also change the condition automata

• This is effectively what is done by abstract interpretation state checking
• Usually done in terms of temporal logic formulas

• Boolean formulas
• With additional operators for time (different sets are used)

• X is true forever (X always occurs)
• X is true in the next state
• X is true in some future state (X eventually occurs)
• X is true in some state after Y is true
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Model Checking
• Create a single formula that is true if the program fails

• Represent a program state s as a Boolean vector
• Finite number of variables, each with a finite representation
• Includes the program counter (e.g., the program point)
• Assume a finite number of threads – each thread has its own state

• Program state is the concatenation of the thread states
• Define the starting state of the program s0
• Create a logical relation representing program execution

• R(s1,s2) is true if program can transition from state s1 to state s2
• Basically, R is the OR of the effect of each instruction on the program state

• Create a  temporal logic formula representing the condition C(s1)
• Over the program state – map from the FSA if needed

• Create a formula that says an execution from s0 leads a state where C holds
• Temporal logic (repeatedly use program relation)

• This is large, but can be created mechanically

• Prove that formula holds
• The proof provides a counter example and hence a potentially buggy execution
• Find a set of values that satisfies this formula
• Convert that into the appropriate execution
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Model Checking

• Various technique exist to do the checking efficiently
• Ordered binary decision diagrams 

• Cute data structure that can greatly simplify the search
• Can handle program states space of size 2^100 or so

• Newer technologies for 3SAT and similar problems
• Can generally handle these as well

• These are all batch processes however
• Both can yield a proof that shows how the program can fail

• Which can be translated into a counterexample
• Which can be translated back to the actual program
• To provide feedback to the user

11/14/2024 CSCI2340 - Lecture 20 32



Practical Model Checking
• The whole process can be semi-automated
• JavaPathFinder is used by NASA for example

• Starts with annotated Java code
• And conditions to check

• Either says the model is correct
• Or shows an execution leading to an error

• Counterexample 
• If the reported execution isn’t possible

• The model can be made more robust
• Adding additional annotations or constraints
• Extending the way values or the program is modeled

• Often, a proof involves multiple such changes
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PROJECT

• You should have a working version of your project
• Not fully functional
• But demonstratable 
• Something you can feel good about

• Choose a date for project presentations
• One of 12/3, 12/5, 12/10 (2 presentations a day)
• Or I will choose one for you
• eMail me your options and priorities and I will assign dates
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