HOW DO THEY KNOW THE THEY DRIVE BIGGER AND THEN THEY WEIGH TWE
LOAD LIMIT ON BRIDGES. LAST TRUCK AND

LOOSE PARTS OAVEBLAZEK

1 dunno, doc, 1 quess I'm just
always waiting for someone :I-_:._.
to validate me.

Loose Purty bachs ravwr 11 LeswePar byl smic com
By [l [larei » tampar Spiuercg it - Dil by Trdeorw {moflanll i

Type Checking Requires Wor

* Type checking doesn’t take flow of control into &

e Considers the declared type, not the actual
* Routine without a declaration can retur
* Doesn’t know what actual types migh

* Methods use their declared typ

* Need to annotate all interm
* And there can be alo

e Want to understa

Beyond Type Checking es=

* Check data-oriented properties without all the anno
* Annotate only source and sink

* Check program-oriented properties
* That aren’t related to a type

* Approaches exist

* Using Data Flow Analysis to prc
* Running a model of the prog

* Using Model Checking

* Map program to c

* Map safety cc

* Create g

Data Flow Analysis: A More General Solutior

5L PARASOFT.
[P ot soteretore T

 Determines what code can be reached

Parasol;fi:g.

 And what code orderings are possible ~ Write better C# Code
* Considers different calling situations i"v’vi'vg E e < |

* Determines what values that can reach ea L

* Value is an abstract representation of prog
 Specific type & subtype and finite value
* Tracked for all instances: stack, lo

* Values can then represent tyg
* Actual types, not declarec

* Does implicit type
* Without having

11/14/2024

CodeAssure — Simulated Execution

Program Entrypoints

o Analysis operates on a proprietary,
language-neutral, internal program
representation

=

Process begins at program entry
points and analyzes all possible code
paths

= Data flow analysis

= Integer and string range tracking

* Function calls

Can be used to check state-based safety conditions : s
* Associate set of safety condition states with each program point L » Alias tracking
* Propagate these through the execution D Tests Evaluate:

= Impact of standard API calls

+ Changing states based on potential program events LA : SRS ——
* Any point with an associated error state represen Vu,ne,am,e@e e oty bebdors
Can be used to check data-based safety cc CONFDENTIAL ™
* Associate data states (subtypes) with e ~ Secure Softvare
* Extend the notion of type to in
* Propagate these through the
* Computing and adj
* Determine when d

Can be used fo
* Tracking
° .

Sensitivity Levels of Data Flow

Path-sensitive

* Consider each different program path separately & : P
) .) nalysis Sensitivity
* First time through a loop versus 2" time, ... _.___——

Flow-insensitive

* More accurate, but can get very expensive (recall path coverage B What may happen (on at least one path)

B Linear-time

Flow-sensitive Flow-sensitive

B Consider control flow (what smust happen) More

° COHSIder Control ﬂow Wlth'n a method B [terative data-flow: possibly exponential sensitivity

Context-insensitive = More

* But merge states when control flow comes tog W call treated the same regardiess of ciller NSEIIEERIY

B “Monovariant” analysis more
Context-sensitive expensive

Flow-insensitive % s e eias i il

B “Polyvariant” analysis

* Justlook at all possible computati Path-sensitive vs path-insensitive

* Inany order and withou 2 ;32’;’("‘;‘::: et Vf:; BUEry pecution 1patl
* Much less expensive B Extremely expensive

* Useful for some a

* Too imprecise

“Advanced Compiler Techniques” 22

Context-sen

Low accuracy Low accuracy
Low precision High precision

Precision & Accuracy

A flow analysis is precise if
* Every possible execution is included in the flow analysis
* The analysis covers all executions and then some

A precise analysis guarantees
* Ifit shows there is no problem, the program
 Ifit shows a problem, the program MA

A flow analysis is accurate if
* An error found in the anal
e But no errors in the anc
* Much more diffic

You want both ¢
* Precisior

Hi
L

Compiler Data Flow Analysis

e Data flow analysis is used for compiler optimizati
* For specific properties

* What variables are alive (will be used) at a pr

* What definitions reach a given program

* What expressions are available

* What values are constants

* Fix set of bits indicating y

* Bit sets are propagat
 Over agrapho
* Using relati

a=c+u| Bs

a is live at block B4, B3 B4 but killed at Bs

[F"C.' true] :=r.,y=‘r

Abstract Interpretation

Fatia

d . . | F"C:.‘-{:: 2= |
* Abstract interpretation based flow analysi R

* Simulate program execution
* Using a finite state version of the prog

* Starting at all possible starting pc
* Main programs; test cases;

* Using abstract values
e Abstract value: c

Abstract Execution Uses a Finite Program

Calls are not call-return
* Each method/function has its own execution model
* Call merges call arguments into parameter values for called model
e Called models are handled independently
e Return value of called routine used at call site

Conditionals can take multiple branches
 Based on what is known about values
* Nondeterministic finite state automata

Associate values with each instruction
* Values are finite but are always increasin
e Control flow meeting points merge
* Need to reevaluate instructions

The result is effectively a fi
* With a finite set of

11/14/2024

Assessing context sensitivity

oMY EXT CONTEXT o,
i Mgy

. ° ° ° K,;n“‘ﬁ E }%4%
Execution and Sensitivity ‘mom
%ﬁﬁ{ "o ikELNnS:gnm par® !ﬁg

* How to interpret code depends on flow sensitivity

* Multiple instances of a function -> context sensitiv
* Generally, a separate instance for each call site

* Single instance of a function -> context in

e Consider flow inside a function -> fl
* Otherwise, assume all statements
* Flow insensitive is useful for

* Multiple instances of a

 Note that all of th
e And hence

11/14/2024

Program Points

* Abstract interpretation effectively exe
* Looking at the effect of each instruc

* Interpreting source code at t
* This can be done using th
* Think of an ordered AST

* Enter a node
* Returntoa

e Dotted A
* These are

ElemTab = ()

»
___FlemTab =

Declarations

ElgmiNewTak = ("name™)) _I_e_mTab = Cname

T
VAN
- 0 +
N/
1

(b) Lattice for a single variable

Values in Flow Analysis e i o

(a) Control flow graphs annotated with context-sensitive data flow values

Typed Data: finite representations of data
* With type and subtype information
* For numbers, can indicate a particular value, value set, range, range
* Kept to a small number of items for each value
For strings, a particular value, value set, length range, AN
For objects, keep a set of entities representing possib
* Each creation site (new for example) has its ow
* Generic entity for unknown sources
* Each entity can have field values (whi
* And array entities can have indexe

* ANY values let flow analysis

Each program point ha
Values accessibl
Global value

Values Stored for Progra

e Start of a Method:
* Value of parameters
* Return value (merged)
* Avoid reinterpretiatio

* Program point:
* |nstruction, D

Operations on Values

x40
phase +— 1

* Merging two values ;
* This is the most common operatior i =0
. int phase = 0;
* Needed at all flow merge poin ‘
* Needed for global & field : E;lfasiofi 0)
Needed for merging X = X+2; phase <
if (phase == 1)
* Needed for me -

e Based on ope

1 — phas

phase, 17
assert(x <= 100};

Practical Abstract Interpretation

* Need an efficient representation of values
* Tradeoff between precision and performance
* Since representation needs to be small and finite

* Need an effective way of doing the interp
* Knowing when to create a new instance

* Minimizing the reinterpretation of s
* If merge doesn’t change value

* Tradeoff between precisior

Need to handle the o
* Exceptions, cal

@ Object @ Context Field @ Path @ Flow

Efficient Abstract Interpretation

Use a work queue algorithm
 Start with program starting points (main, tests, ...)
e Create dummy code to execute tests, static initialize

Given a program point with its values Execution
* Determine the set of next possible prograr fuly symbolic sare

* And the possible values there
* Stack, local variables

Merge values as appropriate
* From original values

Dynamic Symbolic

Indexified Symbolic

Execution

symbolic and indexed state

A Acm

C:] node in CFG
|:| symbolic state

—— concrete state
oo indexified state
—— CFC edges

Flow Analysis Errors

e Detected error indicates a possible program error
* Conflict between expected and actual subtypes
* Using annotations to define expected subtypes
* Error program state reached
* After some program state event-based transi
* Can be wrong (like lint) since it is an app
* The abstract execution might no
* Saved state information can prc e ¢ e
* This is the counter-exar
* It produces a grap
* Usercangot

* No errors fo

Abstract Interpretation Difficulties

11/14/2024

This sounds straightforward, but:
* Real programming languages and real programs are not that simple
* Need to handle real programs and their complications

Java: handling reflection, native methods, initializations, etc.

Handling call backs from system routines
* Swing/AWT event loop itself is hidden

Handling exceptions (especially run time exceptions)
* Thrown exceptions are relatively easy
* Considering all potential run time exceptions is expensive & not very he

Handling test cases (in addition to the main program)
* With the various @Before ... annotations

Handling implicit calls
* Static initializers, boxing and unboxing, lambd
* (Calls to Thread.start imply invoking Threa

Tracking program state & subtype
Making it efficient enough

Flow Analysis Tools

e Quite a few exist

* Mainly for fixed sets of properties
e Optimized for those properties

* Generally, these run in batch
e And can take hours or da

* Examples

Immediate Feedback

* Alot of things are still done in batch

* | believe they would all be more effective if done immediately
* Provide feedback as the developer types
e Compiler feedback in todays IDEs shows this

* My research goal continues to be to find ways to achi
Continuous testing: not that useful since tests tal
ROSE for automatic bug repair while you dek
Code Bubbles checkstyle plugin to checl

And abstract interpretation for chec
* Fast data flow analysis has othe

Compilation

Testing

Checker type checking
Checkstyle

Automatic bug repair

Students who receive Students who receive
immediate feedback delayed or no feedback may
perform better in classes. not perform as well as those
who receive immediate
feedback.

@InteDashboard""

CSCI2340 - Lecture 20

Safety Checking as you Program

* Goal: Show the state of safety conditions in real time
* As the programmer writes or edits the code
* Show problems to the programmer in the IDE

* This is the goal of our FAIT project
* Runs in conjunction with Code Bubble
* Provides error indications at safet

* Provides information on why tf
e Graph of paths leading to tt

* Provides other inform
* Backwards slice o

e Useful for othe

SAFETY CHECK
Y

B

11/14/20

FAIT: Efficient Flow Analysis in an IDE

* Making it efficient and complete
* Handle all the Java complexities such as reflection with some user input (via a resource file)
* Special handling collections, maps, string buffers
* Ignoring methods that do not matter with respect to the condition(s)
* Based on user input in a resource file
* Using unique immutable objects for efficient entity and value representations

* Making it concurrent
* For much faster flow analysis
* Work queue of methods to work on; work queue of locations in the method
* Separate threads can work on separate methods simultaneously with little

* Making it incremental
* To update as the user types
* Detect what might have changed, mark those as invalid

* Handling both source and binary files simultan
* Source for files being edited (needed to avoi
* Binary for everything else

* Tries to be both accurate and pre
* User input on what is imp

11/14/2024

Code Bubbles FAIT Analyzer

* Runs as part of the environment

* Updates anytime there are no compiler errors
e Can’t execute when there are errors

* Provides immediate feedback
* Typically, in under a second, with initi

* Requires the user to define s

 What they want to have
* This varies from one
* Some basic one

e Subtypes

Response render(String page,Map<String,Object> context)

File f = new File(template_directory,page);
if (!f.exists()) {
f = new File(template directory,page + ".html”);

}

if (!f.exists()) {

return NanoHTTPD. newFixedLengthResponse(Response . Status. NOT_FOUND,
TEXT_WIME,"File not found"):

}

try {

cnts = TvyFile loadFile(f);

return NanoHTTPD. neFleIspmse (Respo;‘se .Status, OK, H_N. ren);
catch (IOException e} {
return NanoHTTPD. newFixedLengthResponse(Response . Status. NOT_FOUND,
TEXT_MIME,"File not found");
}

LA PR R R RS S R S R R R R R S R R R R R R R R R R R SRS R R SRS S R SR Y

4

Explain: Attempt to use tainted HTML data in a non-tainted location
In Method : edu.brown.cs.securitylab.SecurityRequest.render
At Line : 181

7 [Jedu.brown.cs.securitylab.SecurityRequest.render

° [181: Attempt to use tainted HTML data in a non-tainted location
FA ‘ ‘ I n ‘ O e B l I e S D 181: Variable context referenced
|__| 17168: Start of Method render

7] edu.brown.cs.securitylab.SecurityAccount. handleLoginRequest
[163: call to Method render b

e Requires some annotation of the code
* Using Java type annotations

* Either direct or indirect (in resource file)
* Using preannotated library routines (from resource file)
* Source and sink annotations required for type checking
* But not the intermediate values as Checker would require
* Standard ones (e.g., Spring html server, Java html ser
* Or can call dummy function (e.g., KarmaUtils.tain
* (Calls to dummy function indicate state-base

* KarmaUtils.event(“event”)

* Requires additional information

* How to handle reflection
* Reflection onlyi
¢ Most stand

* Note specia
e Whatm

Show Code Create Test Case

Description Resource
Unauthorized user access __|SecurityAllocations. java
Attempt to use tainted HTML data in a non-tainted ...
Ul'ldUthUl'lZE‘d user access SecurityProfile.java
Attempt to use l.amted_i-i;!k data in a non- l.d:nE-d loc... |SecurityAccount.java
Attempt to use tainted HTML data in a non-tainted |... |SecurityAccount.java
E [Attempt to use tainted data in as a file name SecurityAccount.java
EiaLhLlnzed uUser access Security Contributions.java
E |Attempt to use tainted data in as a file name SecurityProfile.java
E |Attempt to use tainted HTML data in a non-tainted I... |SecurityProfile.java

E |Unauthorized administrative access SecurityBenefits.java

r-‘r-rlm'r"mrn!r'.* o

FAIT in Code Bubbles

* Reasonably precise for most safety conditions

* But this varies with complexity of the code

* And how complex one allows values to become (ranges and constraint
* Doesn’t detect multithreading errors (e.g., deadlocks and race conc

* Doesn’t consider locks in general

* Graphs let user explore output; resource files let user adj

* Mostly accurate, but accuracy not guaranteed

* Performance, reflection annotations, native c
* User descriptions of these in resource fi
* Doesn’t consider all possible run tin

* Fast enough to be useful
* Updates whenever coc
* Presents current e

* Can be querie

Explain: Attempt to use tainted HTML data in a non-tainted location
In Method : edu.brown.cs.securitylab.SecurityRequest.render
At Line: 181

¢ [J edu.brown.cs.securitylab.SecurityRequest.render
[} 181: Attempt to use tainted HTML data in a non-tainted location
[} 181: Variable context referenced
v’ 168: Start of Method render

¢] edu.brown.cs.securitylab. SecurityAccount.handleLoginRequest
[163: call to Method render

Show Code Create Test Case

FAIT in Code Bubbles

F Description Resource Line ”
E |Unauthorized user access SecurityAllocations. java 55|
E |Attempt to use tainted HTML data in a non-tainted ... |SecurityRequest.java 181||
E |Unauthorized user access SecurityProfile.java 66||
E |Attempt to use tainted SQL data in a non-tainted loc... |SecurityAccount.java 146||
E |Attempt to use tainted HTML data in a non-tainted |l... |SecurityAccount.java 146||
E |Attempt to use tainted data in as a file name SecurityAccount.java 146||
E |Unauthorized user access SecurityContributions.java 62|
E |Attempt to use tainted data in as a file name SecurityProfile.java 109||
E |Attempt to use tainted HTML data in a non-tainted I... |SecurityProfile.java 109||
E |Unauthorized administrative access SecurityBenefits.java 64|

edumbrownmcspsecuritylabmSecurityallocationsedisplayAllocations(

/
/¥ ®f
f* Handle displaying allocations ®f
/¥ ®f
/

Response displayAllocations(SecurityRequest req)
{

assert KarmaEvent("CheckUserRole");

String userid = reg.get("forUser");
String threshold = req.get("threshold");

String q = "SELECT # FROM Allocations WHERE userid = 7"
if (threshold != null} {
= int thint = Integer.parseInt(threshold);
if (thint »= 0 && thint <= 99) {
= q += " AND stocks = " + thint:

}

List<Map<String.Object=> rs = use_database.queryiq,userid);
if (rs.size() » @) {
= Map<String,Object=> scopes = rs.get(0);
return req.render("allocations”,scopes);
}

return req. renderError("No allocations available"):

FAIT Resource Editor for javasecurity

| Subtypes | Safety Conditions | Reflection | Performance |

24518 13 378
24518 13 378
24518 13 378

o= 3 edu.brown.cs. securitylab. SecurityDataba919 5 129
9491 5 g1
1767 4] 37
1201 4] 55

OO0 0B B

true
true
true
true
true
true
true

MED

edup-brownmcspsecuritylabpSecurityRequesterenderi.)

&

T

/*
/* Rendering methods
/*

Response render(String page,Map<String,Object> context)
{

File f = new File(femplate_directory,page):
if (1f exists()) {

= f = new File(template directory.page + ".html"):
}
if (1f exists()) {
= return NanoHTTPD. newFixedLengthResponse (Response. Status . NOT_FOUND.
TEXT_MIME."File not found");
}
try {
= String cnts = IvyFile. loadFile(f);

return NanoHTTPD. newFixedlengthResponse (Response. Status. 0K, HTHL_MIME, ren);
}
catch (ICException e) {
= return NanoHTTPD. newFixedLengthResponse (Response. Status. NOT_FOUND,
TEXT_MIME,"File not found");

[v].4

Verification

Program in Domain Specific Language Model Checking
1

Distributed Safety
Application Specification |
\\//
Sequentialization (assumin |
|__synchronous communication) |

Model Checking

Single-Threaded C Program |

!

* Abstract interpretation is limited
* Doesn’t consider interleaving executions
* Doesn’t consider external events
* Doesn’t consider locking
* Doesn’t consider the external world

* Model Checking is a more genere
* Designed to handle interactior
* Designed to handle thre
* Can handle locking
e Used extensive

11/14/2024

HMEI
(system requiremen

Model Checking

* Originally created for checking hardware
* Small number of internal states
* Hardware is inherently finite

* Then used for checking embec

-

/ ':':.Hl}dl!} \ Answer
‘H'IEEHI'Ig‘. f = TS if model satisfies
el kool - specification

Counter-example if model
does not satisfy specification

[Specification
|(system property)

Model Checking

* Can be done in terms of automata
* One automata for program, one for safe

* Find all possible pairs of states
* Run the two automata in step (cros
* Events from program automa
e Qutside events can also

* This is effectively wh

e Usually done in
* Boolean fc

System Model System Property

Model Checking
* Create a single formula that is true if the program fails

* Represent a program state s as a Boolean vector
* Finite number of variables, each with a finite representation o P —
* Includes the program counter (e.g., the program point) it example
* Assume a finite number of threads — each thread has its o

* Program state is the concatenation of the thread state

Define the starting state of the program s,
Create a logical relation representing prog

* R(s1,s2) is true if program can transiti

* Basically, R is the OR of the effe
Create a temporal logic form

* Over the program sta
Create a formula th

Model Checking

* Various technique exist to do the checking effici

* Ordered binary decision diagrams
e Cute data structure that can greatly simplify th
e Can handle program states space of size

* Newer technologies for 3SAT and
e Can generally handle these as

* These are all batch proc

* Both can yield a pr
* Whichcanb

Program Model Checking

A Practitioner’s Guide

January 15, 2008
Version 1.1

PROJECT

* You should have a working version of your projec
* Not fully functional
* But demonstratable
* Something you can feel good about

* Choose a date for project pre
* One of 12/3, 12/5, 12/1
* Or | will choose on
* eMail me you

	Static Analysis II
	Type Checking Requires Work
	Beyond Type Checking
	Data Flow Analysis: A More General Solution
	Data Flow Analysis
	Sensitivity Levels of Data Flow Analysis
	Precision & Accuracy
	Compiler Data Flow Analysis
	Abstract Interpretation
	Abstract Execution Uses a Finite Program
	Execution and Sensitivity
	Program Points
	Values in Flow Analysis
	Values Stored for Program Points
	Operations on Values
	Practical Abstract Interpretation
	Efficient Abstract Interpretation
	Flow Analysis Errors
	Abstract Interpretation Difficulties
	Flow Analysis Tools
	Immediate Feedback
	Safety Checking as you Program
	FAIT: Efficient Flow Analysis in an IDE
	Code Bubbles FAIT Analyzer
	FAIT in Code Bubbles
	FAIT in Code Bubbles
	FAIT in Code Bubbles
	Model Checking
	Model Checking
	Model Checking
	Model Checking
	Model Checking
	Practical Model Checking
	PROJECT

