
Maintenance I
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

11/18/24 CSCI2340 - Lecture 21 1

What does Maintenance Involve
• Changes to the software
• New features, capabilities, uses
• Fix bugs, scale the system, …
• Adapting and staying ahead of the competition
• Attracting and keeping users
• Making the software self-supporting

• Changes to the environment
• New versions of the language, libraries, OS
• New architectures
• New hardware to interact with

• Changes to the user base
• Changes to personnel

11/18/24 CSCI2340 - Lecture 21 2

Maintenance is Pervasive
• Throughout software development
• In requirements, specifications
• Design for maintenance
• Coding for maintenance
• All software development is maintenance

• Much of maintenance involves coding and debugging
• As well as requirements, specifications, and design
• But we have covered these

• Maintenance also involves some new issues
• That you and your system must deal with
• For the user, web-based applications, the backend, & in general

11/18/24 CSCI2340 - Lecture 21 3

Maintenance Issues: User Facing
• How to have the user install the software

• App stores
• Direct downloads
• Purchases
• On different systems
• No need: it’s a web page

• How to have the user upgrade the software
• Automatic upgrades
• Manual upgrades
• No need: it’s a web page

• How to get the user to understand the software
• How to use it effectively
• How to do what they want to do right now
• Documentation, help, tutorials

• How users interact with the software
• Privacy and security policies
• Usage policies

11/18/24 CSCI2340 - Lecture 21 4

Maintenance Issues: Web-Based
• How will it work with different browsers

• Older browsers, unusual browsers, new browsers
• Optional browser features (e.g., location, camera, audio, …)

• How to have it work under different user conditions
• Lots of different hardware & software options
• Enable/disable cookies, ad blockers, …
• Operating system permissions
• Different networking capabilities
• Cached pages

• How to have the user understand the software
• How users interact with the software

• Privacy and security policies
• Usage policies

11/18/24 CSCI2340 - Lecture 21 5

Maintenance Issues: Back End
• How to upgrade the server as the software evolves

• Minimizing down time
• Without affecting current users

• How to enable porting to a new platform
• New OS, language, libraries
• Changing back end

• How to ensure stability of the platform
• You must upgrade (security, EOL)
• What happens when things changes
• What happens as needs changes
• What happens as resource usage changes
• Keeping it and the data secure
• Monitoring what is happening

11/18/24 CSCI2340 - Lecture 21 6

Maintenance Issues: General

• How to bring new developers on board
• How to maintain other programmer’s code
• Ensuring you don’t break things
• When maintaining the code
• Adding new features
• Adapting to new environments

11/18/24 CSCI2340 - Lecture 21 7

User-Facing Software Issues
• User environment differs from debugging environment

• Jar file rather than class directories
• Binary rather than source
• Not running in the debugger

• Binary files need to be architecture specific
• Different compilers and shared libraries
• Different versions of JRE, JavaScript, python, Node, npm, …
• Different shells and system commands
• Different installation directory and paths
• Different file system (paths might not work) (/ vs \)
• Access to resource files can differ

• You want the software to work in the user’s environment
• Running at arbitrary path, with different permissions
• For arbitrary user environments

11/18/24 CSCI2340 - Lecture 21 8

Resources on the User System
• Resource files

• Images (icons), text (i18n), user-settings, libraries, …
• Options and user settings
• Program needs to read these
• Both while developing and in production

• Accessing resource files in the user’s environment
• Self-discovery (location of binary can be found)

• If resources are kept in a jar
• Need to handle resources in development as well

• Java: Based on class path (using class loader) (works with jar as well)
• Setting an environment variable (and ensuring user sets it)

• Updating the user’s shell startup files
• Patching the binary on installation (or compiling from scratch)
• Part of the system (Mac applications are directories)
• Fixed location (/System/Library/<application>/…, Windows Registry)
• As part of installation (android, ios)

11/18/24 CSCI2340 - Lecture 21 9

Handling the User Environment at Runtime

• Need to run on what the user has
• Different versions of the OS, language, libraries, tools
• Different installation directories, permissions, packages
• Different environment variables, shells, …
• User might not have sudo or root permission
• User might not be a sophisticated user

• Can check prior to installation
• Separate program to check if usable
• As part of build/initialization (linux configure)
• As part of app-store
• As part of preinstallation or installation
• But user can change this underneath you

• Code for the least common denominator
• Don’t use new features
• Or use them only if available
• Or isolate in your own modules

11/18/24 CSCI2340 - Lecture 21 10

Installation & Upgrading

• What do you need to do to facilitate installation?
• Need to have the user install the software on their machine
• Need to have the user install the software in their environment

• Potential problems
• Detecting the environment and adapting to different ones
• Checking if the environment is suitable
• Removing inconsistent or older versions of the software
• Maintaining the user’s settings and work from older versions

• Potential solutions
• Think about all the ways you have installed software

11/18/24 CSCI2340 - Lecture 21 11

Installation Solutions
• Download a package that includes and runs installation script
• app-get on Linux (fixed location install; needs sudo)
• auto-run on CDs

• Download source, configure, compile, install
• homebrew on the Mac

• Download and run a dedicated installer program
• Typically, a single disk image or file containing installer and data

• Can just be installer and do the installation from the network (Eclipse)
• Commercial installers exists

• You customize them by writing “scripts”
• These provide access to common operations

• Open-source installers exist
• Not as robust as the commercial ones; scripts are much more limited

11/18/24 CSCI2340 - Lecture 21 12

Installation Solutions
• Mac OS/X
• Application is already bundled in a directory (*.app)

• User just moves it to the applications folder
• Directory includes binary(s), libraries, resources
• Single directory can work with different architectures

• Disk image contains app and link to applications and hint to move
• Self-Installing
• Check and install as part of system initialization

• Can be done in conjunction with any of the above
• Code bubbles: download jar. First run does the installation

• Prompts user for any needed information
• Sets up install directory contents
• Restarts the application with proper libraries

11/18/24 CSCI2340 - Lecture 21 13

Installation Solutions

• App Stores
• Provide a standard way of installing mobile apps

• You must adhere to the protocols, licenses, inspections, etc.
• Not convenient in early stages of development
• Include resources, compatibility, capabilities needed, …

• Being extended to desktops (mac, windows, chrome-OS)
• But here they typically use normal installers

• Marketplaces
• Marketplaces provide the equivalent for single apps (e.g., Eclipse, Code)
• Useful where 3rd-party plug-ins are a way of extension
• Require considerable work to build, maintain on your own

11/18/24 CSCI2340 - Lecture 21 14

The Updating Problem

• Software updates are going to be required
• Fixing bugs, adding new features, accommodating new OSs, etc.
• What do you require from the user

• Detecting when updates are available
• Knowing when to update, integrating this into the application
• Not asking the user all the time
• Doing it automatically
• Detecting if update is appropriate

11/18/24 CSCI2340 - Lecture 21 15

How to Update
• Separate program that does the update

• Save state that needs to be saved
• Update the software (and saved state)
• Remove previous version
• Restart the software
• Need to ensure the update can be aborted

• Download; atomic replace; restart
• Separate file partitions used in IoT devices

• Downloading and running the installer again
• Rather than a separate program

• But this is visible to user, not hidden
• Using user’s current settings

• Requires a smarter installer
• Installer probably needs to do this anyway

11/18/24 CSCI2340 - Lecture 21 16

Update Issues to Consider
• Matching the installation with the update
• Anything the user had to set up before

• Updating personal resource files if they have changed
• Permissions required
• Checking for other required libraries, packages, systems, …
• Updating libraries, resources, registry
• Removing outdated resources
• Handling errors
• Permissions, disk space, network issues, …
• Bad updates

11/18/24 CSCI2340 - Lecture 21 17

Back-End Systems
• Back-end systems are a bit easier to maintain
• You have control of the environment
• You have control of when and how to update

• Problems still exist
• Isolating users from potential changes
• Isolating from other applications and their needs
• Handling hardware/software errors

• Don’t crash or do an auto restart
• Updating

• With little or no downtime
• Without losing user connections/sessions

• Keep these in permanent storage
• Running multiple versions simultaneously

11/18/24 CSCI2340 - Lecture 21 18

EXERCISE

•What are your projects installation and update plans?
• Have you investigated this at all?
• Have you built it into your system?

• For web applications, what are your compatibility plans?

11/18/24 CSCI2340 - Lecture 21 19

Virtual Machines
• Today most server code is run on virtual machines

• Some of you are already doing this
• You can’t run in production from your local machine

• Cheaper than owning specific hardware for each application
• Your application seems to have its own dedicated hardware
• But the physical hardware can be shared
• Someone else worries about hardware maintenance, etc.
• Can specialize the VM to the application
• Easy to migrate to a new VM

• If the hardware goes down
• As your requirements change

• You have control of the environment
• Libraries, installed software, versions, etc.
• You control when things change

11/18/24 CSCI2340 - Lecture 21 20

Virtual Machines
• Easier to upgrade as needed
• To a larger server
• To multiple servers
• Can migrate from one VM to another

• Save and restore state
• Recovery

• Can just change IP address to point to a new VM to upgrade
• But then everything needs to be saved in a separate database

• Virtual Machines provide a layer of security
• Isolate the software to a particular VM
• Compromise the VM, not the development platform

• Setting up a new VM should be relatively easy
• Can migrate on hardware failures

11/18/24 CSCI2340 - Lecture 21 21

Most VMs run Linux
• Standard configurations for most standard servers

• For most execution stacks
• Apache, MySQL, Php; Node, Mongo; Wordpress; dart/flutter; flask …
• Or instructions for setting up such a server for your stack

• Different ecosystems provide different options
• Amazon (AWS): servers, disk space, SQL & NoSQL databases, firewall, credentials, …
• Brown CS: servers, disk space, PostgreSQL, firewall (staff maintained)
• Google cloud, Microsoft Azure, IBM …

• You should learn how to manage the system
• Install and upgrade software (apt-get)
• Manage the database system
• Manage credentials, users, …
• Manage the firewall

11/18/24 CSCI2340 - Lecture 21 22

GIT and the VM Server
• GIT can be useful for maintaining the virtual machine
• Ideally you have a development version of the software
• Can have a production branch as well

• Installing on the server should be as easy as
• git pull (to get the proper version)
• Run installation or update script

• Set up anything that needs setting up
• Stop old server
• Start new server (pm2)

• Can be automatic with git/GitHub actions
• Actions also available from cloud service

• Update script for database
• If the database schema has changed

11/18/24 CSCI2340 - Lecture 21 23

Virtual Machine Issues
• Virtual machines have considerable overhead
• Pre-allocate memory, disk, …
• Startup, even from sleep, takes time
• Extra runtime overhead of a hypervisor
• Migration can take time (copying large files)
• Out of your control

• But they provide a high degree of isolation
• One VM is unlikely to affect another
• Corrupting a VM doesn’t corrupt everything
• And they offer a lot of flexability

• Would like the benefits without the costs

11/18/24 CSCI2340 - Lecture 21 24

Containers

• Containers are a lightweight solution
• Equivalent functionality to VMs
• But with much less overhead

• Operating-system level virtualization
• Multiple isolated systems running using a single kernel
• Isolation

• Independent process trees
• Independent networking
• Independent user ids
• Independent file systems
• Container can crash or be corrupted without corrupting the system

11/18/24 CSCI2340 - Lecture 21 25

Container Pros and Cons
• Isolation of file system, processes, network, users
• Rollback
• Save and restore images, restart from image
• Fast to start a new container from image

• Rapid deployment
• Migrate from one container to another
• Save and restore state
• Difficult to use with user facing apps
• Need access to the shared display

• Depend on host for networking

11/18/24 CSCI2340 - Lecture 21 26

Containers and Microservices

•Microservice architecture
• Divide the system in small, composable pieces
• Services can invoke other services
• Front end (web/mobile?) can invoke services as needed
• Services can be updated or replaced independently
• Good fit for some applications

• Containers are a good match for microservices
• Each microservice can run in its own container
• Database can run in its own container or VM

11/18/24 CSCI2340 - Lecture 21 27

Managing Containers

•Managing a lot of containers can get tricky
• DOCKER provides facilities for this
• Based on kubernates

11/18/24 CSCI2340 - Lecture 21 28

HOMEWORK

• Sign up at DOCKER if you don’t already use it
• Download and install DOCKER desktop
• Do the tutorial that is there
• No hand in

11/18/24 CSCI2340 - Lecture 21 29

Privacy and Security Policies
• Privacy and security were considered since requirements

• Pretty much in the abstract
• Once you have a user-facing system these become concrete

• You need a privacy policy
• What data you are storing and why
• What permissions users retain on their data
• How to meet various legal requirements

• California and GDR (Europe) have specific requirements
• Might want to verify compliance with your policy

• You need a security policy
• How to handle personally identifiable information
• Your responsibility for that information
• Keep track of what you are doing – security czar

11/18/24 CSCI2340 - Lecture 21 30

Usage Policies and other Legal Issues

• You probably want a usage policy
• Can someone scrape your site

• To grab your data or functionality
• Can someone scrape your site for search
• Can someone scrape your site for building an AI model
• How much can one person use the site

• Can your site be accessed from a bot or application or must it be a real user
• Other legal issues
• HIPAA (health), FERPA (students), COPPA (children)
• ADA compliance
• IP for code and data (copyrights, trade secrets, patents)
• Liability for accuracy of information presented

11/18/24 CSCI2340 - Lecture 21 31

PROJECT

• Presentation Schedule
• 11/26: User Interface Generation
• 12/03: Speech
• 12/03: Sense IoT
• 12/05: LLAMA
• 12/05: DJ Mix
• 12/10: Agentic
• 12/10: Accessibility
• 12/12: Final demos for all groups (optional)

11/18/24 CSCI2340 - Lecture 21 32

