
Maintenance II
CSCI2340: Software Engineering of Large Systems

Steven P. Reiss

11/18/24 CSCI2340 - Lecture 22 1

Bugs and Features
• Much of maintenance is bug and feature driven
• You will find bugs
• Other programmers will find bugs
• Your QA team will find bugs
• Users will find bugs
• Your team want to add new features
• Your management will want new features
• Users will want new features

• You will need to track, prioritize, and address these issues
• To know what to work on next
• To understand the state of the system

11/18/24 CSCI2340 - Lecture 22 2

Bug Tracking
• If there are a small number of issues (10s)
• You can do it by hand or on paper
• I use the Reminders app on the Mac for example
• But this lacks history, is not shared or prioritized, …

• But a large system with a user base can have many more issues
• 100s or 1000s outstanding is not unusual
• Need something more sophisticated

• Tools exist for this purpose
• Bug tracking or problem tracking system
• JIRA, , YouTrack, GitHub Issues…
• Organized database of bugs & features

11/18/24 CSCI2340 - Lecture 22 3

Bug Tracking System Features
• Let you define bugs and feature requests
• Stored in a permanent repository

• Assign these a unique id
• That can be used in the code and in commits
• That are permanent

• Link bugs with associated bugs (avoid duplicates)
• Give bugs a priority (critical, severe, … feature request)
• Assign bugs to a developer to be fixed or implemented
• Track status of entries (submitted, validated, fixing, done)
• Search for bugs using various criteria and terms
• View the history of a bug or feature request

11/18/24 CSCI2340 - Lecture 22 4

Bug Tracking System Features

• Add comment, notes, etc. to entries
• Questions & answers as well

• Sending email on status changes
• Statistics (for management)
• Track the state of the system
• Track progress

• User-accessible portal
• Users can comment on bugs
• Users can report bugs
• Users can vote bugs up or down

11/18/24 CSCI2340 - Lecture 22 5

Bug Tracking System Problems
• A bit of overhead is involved
• Can take 5-10 minutes to enter a new bug

• Or feature request
• Or more, depending on problem
• Entering all the necessary data
• Ensuring it is a new bug, not a duplicate

• Modern systems have made this easier
• By providing more flexibility

• Geared toward larger organizations
• Seems like overkill for an individual or smaller project

• Not that flexible or easy to adapt to your flow
• Difficult to customize the interface to your system

11/18/24 CSCI2340 - Lecture 22 6

Modern Systems: GitHub Issues
• Simple interface for a bug database

• Not structured like other systems, more freeform
• Wiki-like description, comments, feedback on bug
• Issues have a number

• Number only, starting at 1
• Issues have labels or tags

• Default is type of bug.
• Can be expanded to include priority

• Issues can be assigned to a developer
• Issues are associated with a project and a branch
• Issues have a state (open/closed)

• Interface can be customized to project/team
• For example, the set of tags available

• Notifications for status changes

11/18/24 CSCI2340 - Lecture 22 7

Homework

• If you don’t do so already, try using GitHub Issues to track
bugs in your project.
• Ensure you have at least one issue (even if it is ”Start using GitHub

Issues”)

11/18/24 CSCI2340 - Lecture 22 8

Maintenance Programming

•Maintenance programmers work on other people’s code
• When assigned a bug or feature to address
• Possibly on the same project, possibly on a different one
• Possibly on open-source code

•Maintenance programming is different from initial coding
• And from maintaining your own code
• In how you approach the code
• In how you write the code

11/18/24 CSCI2340 - Lecture 22 9

Approaching the Code
• Determine where the change should be made

• This is fault localization
• Experimentation – find the code that causes the bug

• Easier if there is a test case you can use in the debugger
• By searching over the source

• Looking for error messages, names, stack traces
• By asking others or looking at (non-existent) documentation
• Like fixing your own bugs, BUT…

• Don’t attempt to understand the whole system
• Concentrate on the problem at hand

• Only understand what the minimum needed to locate the problem
• Try to find pieces of the code that might be relevant

• Using names, coverage, …
• Using the IDE (name search, calls to a method, …)
• Using documentation

• Fault localization is often the most difficult part of maintenance programming

11/18/24 CSCI2340 - Lecture 22 10

Fixing the Code
• Develop a fix that addresses the problem

• Like fixing your own bugs, BUT …
• With a minimal effect on anything else

• Better not to try to fix the rest of the system
• Concentrate on the problem at hand

• But be general enough to handle related problems
• If you can prove such problems exist

• Understand the full effect of the code
• What it does to the local function
• If those changes flow out of the function, understand what it does to callers
• Propagate this to callers of these as well – but try to minimize the effects

• Validate the fix manually
• Check anything else done in the local area

• Think about possible consequences of the fix
• Find a fix that causes minimal changes to the function and to its return values
• Check all call sites and assumptions
• Check what other conditions might apply
• Ask why it worked in general and failed in this case
• Satisfy (prove to) yourself that the fix works and doesn’t affect other cases

11/18/24 CSCI2340 - Lecture 22 11

Writing the Code

• Use the style of the existing code
• Not your personal style
• Not your project’s style if it is a library

• Add a comment for the fix
• With your name, date
• With the bug id if there is one
• With information about the fix

•Write good code
• Others will read it and judge you by it

11/18/24 CSCI2340 - Lecture 22 12

Validate the Code
• On paper – manually check the actual code
• Prove to yourself that the code works
• Double check and triple check

• With the original problem
• Create a test case if you didn’t start with one
• Add to your test suite if possible

• With other test cases
• Using the existing test suite
• Adding other test cases that you see that might be at issue

• Based on your analysis of what other things might be affected
• Maintenance program is fun and challenging
• What is the minimum you need to understand of the system to fix the bug

11/18/24 CSCI2340 - Lecture 22 13

Monitoring Your System
• You want to know about your system

• Is it being used
• How is it being used
• What are the problems users are having
• What are the problems the system is having
• Are there performance issues
• Are there security issues
• Has your data been compromised
• Where should you put your future efforts

• How can this be done
• By asking your users

• Pop-ups, surveys, feedback requests
• Automatically

• In various ways

11/19/24 CSCI2340 - Lecture 22 14

Automatic Monitoring: Analyzing Logs
• Of URL requests to the server (RESTful and otherwise)
• Log analysis tools exist to help here

• Of command sequences (without sensitive data)
• Operating system logs; self-generated logs
• Log analysis tools can help here if logs are structured
• Code Bubbles sends anonymized command info to server

• These can then be analyzed off-line
• From your applications logging
• You are writing log files – make them easy to interpret

• Easy to find relevant information in
• Structured in some way

• Our loggers have <module>:<severity>:<thread>:<message>
• Other loggers have their own standard or structured format

11/20/24 CSCI2340 - Lecture 22 15

Automatic Monitoring: Bug Tracking

• Crash reports sent automatically
• Many applications request permission to do so
• On force quit
• On internal error
• Tools exist to analyze these if they are structured

• Even if the system can recover from the error
• You can send information about the problem
• Need to get user permission for this (at installation)
• Code Bubbles detects and sends problems to our server
• Which we check periodically

11/20/24 CSCI2340 - Lecture 22 16

Automatic Monitoring: Usage
• You can request permission to track usage
• To help improve your system
• From user at installation

• Need to instrument the software
• To provide the necessary data
• Better to do it at random for short periods

• You can still get a good sample
• And the user shouldn’t notice the instrumentation

• Output the information so it can be analyzed
• Standard (structured) format usable with log analysis tools
• Code Bubbles command logs

11/20/24 CSCI2340 - Lecture 22 17

Documentation

• Users expect documentation
• Even if they don’t use it

• A system that needs documentation is a faulty system (poor user interface)
• How often do you read documentation

• Actually, most people do read documentation
• But in subtle forms

• Programmers hope for documentation
• When they must maintain the code
• When they want to understand or reuse the code
• And they hope the documentation is accurate and up-to-date

• But you should be skeptical

11/18/24 CSCI2340 - Lecture 22 18

Forms of Documentation
• User Documentation
• Manuals
• Tutorials
• Help systems (searchable manuals)
• Tool tips

• Code Documentation
• API descriptions (JavaDoc)
• Usage examples
• In line and block comments
• Design documents, interfaces, facades, UML
• Get in the habit of documenting as you write and rewrite

• Note that documentation tends to get out of date as code evolves

11/18/24 CSCI2340 - Lecture 22 19

User Manuals
• Written so they can be used interactively

• Small units, properly labeled
• Indexed
• Tools exist for this (EBT, FrameMaker)
• Many of the descriptions are too simplistic to be useful for difficult problems

• Manuals are not detailed enough to be helpful
• Difficult (tedious) to write

• Most people only read a small portion
• Need to be concise but complete

• Determining what is relevant or important
• Documentation writers might not know software that well

• Programmers don’t have time/knowledge/ability to write manual well
• Indexing needs to handle different vocabularies

• User terminology and programmer terminology often differ

11/18/24 CSCI2340 - Lecture 22 20

Interactive Help

• Context-sensitive help systems
• F1 brings up help based on current location

• Other forms of help
• Code Bubbles help (DEMO)

11/18/24 CSCI2340 - Lecture 22 21

Tutorials
• A tutorial is a good start for understanding
• Attempt to illustrate main features
• Show off the system capabilities
• Give users enough knowledge to start doing their own work

• A video of the tutorial (or the system in action) can help
• To promote the system
• To help users understand how to use it
• To help understand the tutorial
• Necessary for research software

• A hands-on tutorial (possibly with a video) is better
• Tutorials should be easy for the user to install and use
• Consider the docker tutorial you did earlier

11/18/24 CSCI2340 - Lecture 22 22

Tool Tips
• These are the most convenient documentation tools

• Don’t require any effort on the user’s part
• Always available
• Users are used to them
• Available in most front-end and web tool kits

• You should provide tool tips for all UI features
• Every button, icon, text field, …
• Any place else where additional information can be helpful

• Bubbles code editor – elision, line number, debugger context, variable values, …
• Tool tips can be more than just pop-ups

• Consider hints in VS-Code
• Consider the help pop-ups in code bubbles

• Be careful that tool tips don’t get in the user’s way

11/18/24 CSCI2340 - Lecture 22 23

Monetizing Your Project

• Software has costs to maintain
• VMs are not free
• Need hardware and software maintenance
• Need programmers

• You need a business plan to support long-lived software
• Ads, contributions, subscriptions
• Selling data
• Supported by company
• These might need to be part of requirements/specifications
• Support does not mean profit (but it can)

11/18/24 CSCI2340 - Lecture 22 24

Course Review

11/18/24 CSCI2340 - Lecture 22 25

Software Engineering Research

• If anyone is interested in research
• On any of the topics covered in the course
• Or related topics

• Drop me an email
• Or we can schedule a meeting

11/18/24 CSCI2340 - Lecture 22 26

THANK YOU!!!

11/21/24 CSCI2340 - Lecture 22 27

PROJECT Presentations
• Presentation Schedule

• 11/26: User Interface Generation
• 12/03: Speech
• 12/03: Sense IoT
• 12/05: DJ Mix
• 12/05: LLAMA
• 12/10: Agentic
• 12/10: Accessibility

• Final Demonstrations 12/12
• 10 minutes each as needed (optional)

• Each project gets up to 40 minutes (1/2 class)
• Present the problem (requirements, specifications)
• Present the solution (design)
• Present the system (implementation)
• Demo or video of the system in action (live preferred on the 12th)
• What you learned
• Future plans
• Questions

• Feel free to invite your friends and sponsors and anyone interested in the project

11/18/24 CSCI2340 - Lecture 22 28

